Räumliche Zuordnung, interne Adressierung und netzunabhängige Temperatur-Messung

CRATE-STANDORTE	2
POSITIONEN DER MEßFÜHLER	2
ANSCHLUSS DER SENSOREN IM CRATE	4
	_
DIE INITIALISIERUNGSTABELLE	7
ZUM SEDAC-TEMPERATUR-MODUL PT100	8
A) BESCHREIBUNG DER SEDAC-REGISTER	8
Register zum Auslesen: SEDAC-READ	8
Register zum Schreiben: SEDAC-WRITE	8
A) BESCHREIBUNG DER SEDAC-REGISTER	8
ETHERNET-UNABHÄNGIGE TEMPERATURMESSUNG	
1. Aufbau	9
1.1. Vorhalten	9
1.2 Aktuell festlegen	9
2. Messprogramm: "Temperaturmessung"	10

Crate-Standorte

Crate- Nr.	Standort
02	DORIS-Ring NL 14
04	DORIS-Ring NR 14
05	DORIS-HF2-Halle
06	DORIS-HF3-Halle
08	Geb.30a ER 2
10	DORIS-Ring SL 38
11	DORIS-Ring SR 34
12	DORIS-Ring SR 61
13	DORIS-Versorgungshalle 2, 1.Stock
14	DORIS-HF4-Halle

Positionen der Messfühler

TABIN	Abkürzung	Name	Ort
1	V2 Rlf	Kühlwasserkreislauf: Rücklauf des Absorber Wassers, Pumpenhaus	VH 2
2	V2 Vlf	Kühlwasserkreislauf: Vorlauf des Absorber Wassers, Pumpenhaus	VH 2
3	BW 1 O	Auslass Kammer Bypass-Wiggler 1; Oberseite vom Flansch	NL 22
4	BW 1 U	Auslass Kammer Bypass-Wiggler 1; Unterseite vom Flansch	NL 22
5	BW 2 O	Auslass Kammer Bypass-Wiggler 2; Oberseite vom Flansch	NL 12
6	BW 2 U	Auslass Kammer Bypass-Wiggler 2; Unterseite vom Flansch	NL 12
7	BW 3 O	Auslass Kammer Bypass-Wiggler 3; Oberseite vom Flansch	NL 1
8	BW 3 U	Auslass Kammer Bypass-Wiggler 3; Unterseite vom Flansch	NL 1
9	BW 4 O	Auslass Kammer Bypass-Wiggler 4; Oberseite vom Flansch	NR 7
10	BW 4 U	Auslass Kammer Bypass-Wiggler 4; Unterseite vom Flansch	NR 7
11	BW 5 O	Auslass Kammer Bypass-Wiggler 5; Oberseite vom Flansch	NR 16
12	BW 5 U	Auslass Kammer Bypass-Wiggler 5; Unterseite vom Flansch	NR 16
13	StrahlK_Ausl	Auslass Kammer Strahl K; Oberseite vom Flansch	NR 46
14	BW 6 U	Auslass Kammer Bypass Wiggler 6; Unterseite vom Flansch	NR 26
15	DO Luft	Lufttemperatur, DORIS -Ring	NL 14
16	BKR Sued	Kontrollraum, Decke; Raumtemperatur Süden	BKR
17	BKR Mitte	Kontrollraum, Decke; Raumtemperatur Mitte	BKR
18	BKR Nord	Kontrollraum, Decke; Raumtemperatur Norden	BKR
19	Außen	Gebäude 30; Außenwand; Nordseite	Geb. 30
20	Strahl I in	Auslass Kammer Strahl I; Innenseite vom Strahlrohr	NL34
21	Strahl I out	Auslass Kammer Strahl I; Außenseite vom Strahlrohr	NL34
22	SR33 Vlf	Bogen Süd Rechts; Vorlauf	SR 40 (!)
23	W2 In1	Auslass Kammer HaRWi Innen 1, hinter W2.1; Innen*	SR 38
24	W2 In2	Auslass Kammer HaRWi Innen 2, hinter W2.1; Vorlauf	SR 38

^{* :}Blickrichtung vom Mittelpunkt des Speicherringes aus

Letzte Änderung vom 07.03.13 15:44

TABIN	Abkürzung	Name	Ort
25	BW 7 ZwO	Bypass-Wiggler 7 Zwickel; oben	NR 39
26	BW 7 ZwU	Bypass-Wiggler 7 Zwickel; unten	NR 39
27	BW 7 V0	Auslass Kammer Bypass-Wiggler 7; Innenseite vor Ventil*	NR 39
28	W 2 O	Auslass Kammer HaRWi; Oberseite	SR 33
29	W 2 U	Auslass Kammer HaRWi; Unterseite	SR 33
30	SL34 Ob	Bogen Süd Links, oben	SL 36
31	SL34 Un	Bogen Süd Links, unten	SL 36
32	SL34 Au	Bogen Süd Links, außen*	SL 36
33	SL34 In	Bogen Süd Links, innen*	SL 36
34	NR36 Li	Strommonitor NR (Kanal 1); direkt auf Monitor*	NR 36
35	NR36 Re	Strommonitor NR (Kanal 2); auf Kammer hinter Monitor*	NR 36
36	W 2 ZwO	HaRWi Zwickel; oben	SR 33
37	W 2 ZwI	HaRWi Zwickel; innen	SR 33
38	SL23.7 TSP	TSP; unten	SL23.7
39	SL23.7 Flansch	Flansch über TSP; innen*	SL23.7
40	SL28.9 TSP	TSP; unten	SL28.9
41	SR16 Gap	Strommonitor SR (Kanal 1); am Gap	SR 16
42	SR16 Ct	Strommonitor SR (Kanal 2); am Ct	SR 16
43	xxx	xxx	XXX
44	BW5 ZwO	Bypass-Wiggler 5 Zwickel; oben	NR 16
45	LuKi Vfl	Lückenkicker; Wasserkühlung Vorlauf	SR 59
46	LuKi Rfl	Lückenkicker; Wasserkühlung Rücklauf	SR 59
47	DOLuftSR	2. Meßstelle, Lufttemperatur DORIS-Ring; Leiter	SR38
48	1Target_1BPM	OLYMPUS vor* Target-Zelle BPM1 außen* (F-Sensor)**	SL2
49	2Target_ABlock	OLYMPUS Target-Zelle Alu Block Oben links* (G-Sensor)**	SL2
50	3Target_RLuft	OLYMPUS Target-Zelle Raumluft unter dem Alu Block (G- Sensor)**	XXX
51	4Target_2BPM	OLYMPUS hinter* Target-Zelle BPM2 außen* (F-Sensor)**	xxx
52	5Target_VAu	OLYMPUS Strahlrohr außen* (F-Sensor)**	xxx
53	6Target_HAu	OLYMPUS hinter* Turbo-Vakuumpumpe außen* (F-Sensor)**	xxx
54	XXX	xxx	xxx
55	xxx	xxx	xxx
56	RefMagIN	Referenz-Magnet, innen*	NR21
57	RefMagOUT	Referenz-Magnet, außen*	NR21
	1		

^{* :}Blickrichtung vom Mittelpunkt des Speicherringes aus ** :F-Sensor = Foliensensor; G-Sensor = Gleitlagersensor

Anschluss der Sensoren im Crate

Crate-	Sub	Kanal	Subadr. für	A DIZÜDZ	TEMP	Meßort
Controller	Adresse		T	ABKÜRZ.	TEMP BEREICH	
02	48	1	Messwert 48	BW1 O	0-100°C	BW 1.1
02	-10	2	51	DO Luft	0-100°C	Lufttemperatur, DORIS
		3	54	BW2 O	0-100°C	BW 2.1
		4	57	BW2 U	0-100°C	BW 2.2
	64	1	64	BW3 O	0-100°C	BW 3.1
		2	67	BW3 U	0-100°C	BW 3.2
		3	70		0-100°C	
		4	73	BW1 U	0-100°C	BW 1.2
	80	1	80	Strahl I in	0-100°C	Strahl I, Innenseite*
		2	83	Strahl I out	0-100°C	Strahl I, Außenseite*
		3	86			
		4	89			
04	16	1	16	BW5 ZwO	0-200°C	BW 5 Zwickel, oben
		2	19		0-200°C	
		3	22	RefMagIN	0-100°C	Referenz-Magnet, Innenseite*
		4	25	RefMagOUT	0-100°C	Referenz-Magnet, Außenseite*
	32	1	32		-50-	
		2	35		+150°C -50-	
		2	33		-50- +150°C	
		3	38		-50-	
		4	41		+150°C -50-	
		4	41		+150°C	
	48	1	48	BW4 O	0-100°C	BW 4.1
		2	51	BW4 U	0-100°C	BW 4.2
		3	54	BW5 O	0-100°C	BW 5.1
		4	57	BW5 U	0-100°C	BW 5.2
	64	1	64	StrahlK_Ausl	0-100°C	Strahl K Auslass Oben
		2	67	BW6 U	0-100°C	BW 6.2 BW6 ist nicht mehr in Betrieb
		3	70	BW7 ZwO	0-100°C	BW 7.1
		4	73	BW7 ZwU	0-100°C	BW 7.2
05	16	1	16	NR36 Li	0-200°C	Strommonitor; auf Monitor
		2	19	NR36 Re	0-200°C	Strommonitor; hinter Kammer
		3	22	BW7 V0	0-200°C	BW 7, vor Ventil, innen*
		4	25			
06	16	1	16	1Target_1BPM	0-100°C	OLYMP. vor* Target-Zelle BPM1 außen*
		2	19	2 Target_ABlock	0-100°C	OLYMP. Target-Zelle Alu Block Oben links*
		3	22	3Target_RLuft	0-100°C	OLYMP. Target-Zelle Raumluft unter Alu Block
		4	25		0-100°C	
	80	1	80	4Target_2BPM	0-100°C	OLYMP. hinter Target-Zelle BPM2 außen*
		2	83	5Target_VAu	0-100°C	OLYMP. Strahlrohr außen*
		3	86	6Target_HAu	0-100°C	OLYMP. hinter Turbo-Vakuumpumpe außen*
		4	89		0-100°C	

BKR 1 / Süd	0-100°C	BKR S	48	1	48	08
BKR 2 / Mitte	0-100°C	BKR Mi	51	2		
BKR 3 / Nord	0-100°C	BKR No	54	3		
Außentemperatur	- 50 − +150°C	Außen	57	4		
Bogen SL 1 oben	0-100°C	SL34 Ob	48	1	48	10
Bogen SL 2 unten	0-100°C	SL34 Un	51	2		
Bogen SL 3 innen*	0-100°C	SL34 In	54	3		
Bogen SL 4 außen*	0-600°C	SL34 Au	57	4		
TSP; unten	0-100°C	SL23.7 TSP	64	1	64	
Flansch über TSP; innen*	0-100°C	SL23.7 Flansch	67	2		
TSP; unten	0-100°C	SL28.9 TSP	70	3		
	0-100°C		73	4		
Strommonitor SR16; am Gap	0-200°C	SR16 Gap	16	1	16	11
Strommonitor SR16; am Ct	0-200°C	SR16 Ct	19	2		
Auslass Kammer HaRWi hinter W2.1,Innen 1	0-200°C	W2 In1	22	3		
Auslass Kammer HaRWi hinter W2.1,Vorlauf	0-200°C	W2 In2	25	4		
Auslass Kammer HaRWi, Zw. Innen	0-100°C	W2 ZwIn	32	1	32	
Auslass Kammer HaRWi, Zw. Außen	0-100°C	W2 ZwAu	35	2		
	0-100°C		38	3		
2. Meßstelle für DORIS Luft, Leiter SR38	0-100°C	DOLuftSR	41	4		
Auslass Kammer HaRWi O	0-100°C	W 2O	48	1	48	
Auslass Kammer HaRWi U	0-100°C	W 2U	51	2		
	0-100°C		54	3		
Bogen SR40; Vorlauf	0-100°C	SR33 Vlf	57	4		
			64	1	64	
	0-100°C		67	2		
	0-100°C		70	3		
	0-100°C		73	4		
Lückenkicker SR59; Vorlauf	0-100°C	LuKi Vlf	16	1	16	12
Lückenkicker SR59; Rücklauf	0-100°C	LuKi Rlf	19	2		
	0-100°C		22	3		
	0-100°C		25	4		
Absorber Wasser VH2; V 2.1 Rücklauf	0-100°C	V2 Rlf	48	1	48	13
Absorber Wasser VH2; V 2.2 Vorlauf	0-100°C	V2 Vlf	51	2		
			54	3		
			57	4		
Wiggler 2 Absorber Interlock; L1 Oben 0cm	0-200°C	W2Abs_1	16	1	16	14
Wiggler 2 Absorber Interlock; L2 Oben 20cm	0-200°C	W2Abs_2	19	2		
Wiggler 2 Absorber Interlock; L7 Unten 0cm	0-200°C	W2Abs_7	22	3		
Wiggler 2 Absorber Interlock; L8 Unten 20cm	0-200°C	W2Abs_8	25	4		
Wiggler 2 Absorber Interlock; L3 Oben 40cm	0-200°C	W2Abs_3	32	1	32	
Wiggler 2 Absorber Interlock; L4 Oben 60cm	0-200°C	W2Abs_4	35	2		
Wiggler 2 Absorber Interlock; L9 Unten 40cm	0-200°C	W2Abs_9	38	3		
Wiggler 2 Absorber Interlock; L10 Unten 60cm	0-200°C	W2Abs_10	41	4		

14	48	1	48	W2Abs_5	0-200°C	Wiggler 2 Absorber Interlock; L5 Oben 80cm
		2	51	W2Abs_6	0-200°C	Wiggler 2 Absorber Interlock; L6 Oben 100cm
		3	54	W2Abs_11	0-200°C	Wiggler 2 Absorber Interlock; L11 Unten 80cm
		4	57	W2Abs_12	0-200°C	Wiggler 2 Absorb. Interlock; L12 Unten 100cm
	64	1	64	W2Abs_13	0-600°C	Wiggler 2 Absorb. Interlock; L13 Oben 120cm
		2	67		0-600°C	
		3	70	W2Abs_14	0-600°C	Wiggler 2 Absorb. Interlock; L14 Unten 120cm
		4	73		0-600°C	
<u> </u>	I .	i		l .		

^{* :}Blickrichtung vom Mittelpunkt des Speicherringes aus

BW X.1 : Messung an der Kammeroberseite; BW X.2 : Messung an der Kammerunterseite

Die Initialisierungstabelle

Der jeweils aktuelle Stand der Initialisierungstabelle des Serverprogrammes kann bei Joern Schwarz joern.schwarz@desy.de, MST Geb.30 R.411 Tel.:2539 erfragt werden.

Beispiel:

TABIN	ENABLED	DEVNAME	BYPASS	DEVPLACE	SEDCR	SEDSU	TMIN	TMAX
1	1	V2 RIf	0	VH2	13	48	0	100
2	0	V2 VIf	0	VH2	13	51	0	100
3	1	BW 1 O	1	NL22	2	48	0	100
4	1	BW 1 U	1	NL22	2	73	0	100
5	1	BW 2 O	1	NL12	2	54	0	100
6	1	BW 2 U	1	NL12	2	57	0	100
7	1	BW 3 O	1	NL12	2	64	0	100
8	1	BW 3 U	1	NL12	2	67	0	100

1.Spalte (TABIN): Tabellenindexnummer

2.Spalte(ENABLED): 0= Meßstelle wird vom Programm nicht abgefragt.

1= Meßstelle wird vom Programm abgefragt.

3.Spalte (DEVNAME): Devicename= Abkürzung für jeweilige Meßstelle

4.Spalte (BYPASS): 0=befindet sich nicht im Bypass

1=befindet sich im Bypass

5.Spalte (DEVPLACE): Deviceplace= Ort der Meßstelle

6.Spalte (SEDCR): Sedac-Crateadresse 7.Spalte (SEDSU): Sedac-Subadresse

8.Spalte (TMIN): Minimalwert auf der, der Messfühler-Eingang der PT100-/PT100INT-

Kassette eingestellt ist.

9.Spalte (TMAX): Maximalwert auf der, der Messfühler-Eingang der PT100-/PT100INT-

Kassette eingestellt ist.

Erklärungsbeispiel zu TABIN (1):

- Meßstelle wird vom Programm abgefragt(ENABLED=1).
- Der DEVNAME für diese Meßstelle heißt Versorgungshalle 2 Rücklauf.
- Meßstelle befindet sich **nicht im BYPASS**(BYPASS=0).
- Ort der Meßstelle ist die Versorgungshalle 2.
- Die Sedac-Crateadresse lautet **13**.
- Die Sedac-Subadresse lautet 48.
- Der Minimalwert des Messfühlers beträgt 0°C.
- Der Maximalwert des Messfühlers beträgt 100°C.

Zum Sedac-Temperatur-Modul PT100

a) Beschreibung der SEDAC-Register

Register zum Auslesen: SEDAC-READ

 $BSA^{1} + 00 = Messwert vom Temperaturfühler 1$

BSA + 01 = Untergrenze vom Meßbereich, Fühler 1

BSA + 02 = Obergrenze vom Meßbereich, Fühler 1

BSA + 03 = Messwert vom Temperaturfühler 2

BSA + 04 = Untergrenze vom Meßbereich, Fühler 2

BSA + 05 = Obergrenze vom Meßbereich, Fühler 2

BSA + 06 = Messwert vom Temperaturfühler 3

BSA + 07 = Untergrenze vom Meßbereich, Fühler 3

BSA + 08= Obergrenze vom Meßbereich, Fühler 3

BSA + 09 = Messwert vom Temperaturfühler 4

BSA + 10 = Untergrenze vom Meßbereich, Fühler 4

BSA + 11 = Obergrenze vom Meßbereich, Fühler 4

BSA + 12 = Programm-Counter

Register zum Schreiben: SEDAC-WRITE

BSA + 15 = Reset Micro

b) Temperaturberechnung

Beispiel: Temperatur T für Fühler 1 T = (BSA + 0) * [(BSA + 2) - (BSA + 1)] / 16383 + (BSA + 1)

 $^{^{1}}$: BSA = $\underline{\mathbf{B}}$ asis- $\underline{\mathbf{S}}$ ub $\underline{\mathbf{a}}$ dresse

Ethernet-unabhängige Temperaturmessung

1. Aufbau

1.1. Vorhalten

- geprüfte Sensoren
- PT100o-i -und PT100INT-Einschübe mit eingestelltem Temperaturbereich von 0° C bis 100° C, 0° C bis 200° C, -50° C bis 150° C und von 0° C bis 600° C
- Crate-Controller
- SedPC/SedUSB
- Netzgerät
- Crate
- Netzkabel
- Bleimantel
- BNC-Kabel
- vieradrige Leitung (2x2x0,14mm² abgeschirmt) [Erfahrung mit Längen bis 30m(HERA), bei PETRA mit Längen bis zu 80m], konfektioniert mit LEMO-Steckern, Abschirmung sollte auf der Fühlerseite keinen Kontakt mit Masse(LEMO-Gehäuse) haben.
- Befestigung: Schraubzwinge, verschiedene Halterungen(z.B. Universal-Halterung)
- Aluminium-Klebeband

1.2 Aktuell festlegen

- 1) Meßort
- 2) Anzahl der Messpunkte
- 3) Bauart des Sensors festlegen/bestimmen
- 4) Befestigungsmöglichkeiten
- 5) benötigter Temperaturbereich bis 180° C mit in Cu gelöteten Sensoren²
- 6) Programmanpassung

Bei neuen Meßstellen müssen folgende Dateien geändert werden:

- Für das Konsolen-Programm die "Initemp1.csv" auf O:\MCA\BINC32\DoTemp\
- Für den Server die "Initemp1.csv" auf O:\MCA\BINS32\DoTemp\
- MCS
- informieren über Änderung für den "Archiv-Viewer"
- 7) SEDAC-Line, Crate und Subadressen einstellen; SedPC an parallele Schnittstelle, d.h. Druckereingang legen oder SedUSB über USB-Schnittstelle.

²: das Standard-Lot wird bei ca. 180°C weich. Die Sensoren arbeiten stabil bis ca. 260 °C. N:\4all\intern\lemckeb\Daten\Temperat\Bearbeitung\Word\Adressierung070313.doc

2. Messprogramm: "Temperaturmessung"

Aufgabe: Netzunabhängige Temperaturmessung mit SEDAC

Nähere Informationen bei:

Joern Schwarz joern.schwarz@desy.de, MST Geb.30 R.411 Tel.:2539