MDI Technisches Forum

DESY, 24.1. 2020

Considerations for PETRA IV

Gero Kube

DESY (Hamburg)

- Introduction
- Overview and Particularities of PETRA IV
- Beam Instrumentation
- MDI Tasks for TDR Phase

PETRA III @ DESY

• PETRA history

- > 1978 1986: e^+e^- collider (up to 23.3 GeV / beam)
- > 1988 2007: pre-accelerator for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source, commissioned in 2009 TDR: DESY 2004-035
 - \rightarrow 14 beamlines (15 experimental stations) operating in parallel
- from 2014: staged extension project W. Drube et al., 2016 <u>https://doi.org/10.1063/1.4952814</u>
 - \rightarrow *up to 12 additional beamlines* (presently not all of them in operation)

Extension Hall North Paul P. Ewald

Extension Hall East Ada Yonath

Max von Laue Hall

Gero Kube, DESY / MDI

PETRA III @ DESY

- consequence of re-using HEP structure
 - large circumference
 - \rightarrow beamlines not all around the machine
 - \rightarrow small natural emittance
 - (+ space for damping wigglers)
 - different machine sectors
 - \rightarrow 8 arcs: L_{arc} = 201.6 m
 - \rightarrow 4 long straight sections: L_{lss} = 108 m
 - \rightarrow 4 short straight sections: L_{sss} = 64.8 m

• PETRA III concept

- > one octant with DBA lattice
 - \rightarrow 9 cells / arc, L_{DBA}=23 m

(P3X: 2 additional DBA cells in 2 octants)

- canted undulator beamlines: (14 out of possible 26)
 - \rightarrow canting angles 5 / 20 mrad
- remaining part: FODO lattice + dispersion suppressors

Parameter			
Energy	(6	GeV
Circumference	23	04	m
Emittance (hor. / vert.)	1.2 /	0.012	nm rad
Total current	10	00	mA
Number of bunches	960	40	
Bunch population	0.5	12	$10^{10} e^{-1}$
Bunch separation	8	192	ns

Diffraction Limited Storage Ring

• "diffraction" limited

reduction of beam energy

PETRA III operated @ 3 GeV

 $\rightarrow \epsilon_x \approx 150 \text{ pm.rad}$

but: E defines radiation spectrum $\hbar \omega_c \approx 0.665 E^2 B$

- > reduce deflection angle θ per bending
 - \rightarrow from *double* bend achromat (2)

to *multi* bend achromat (5, 7, 9, ...)

- \rightarrow MAX IV paved the way
- → others followed / will follow soon (SIRIUS, ESRF-EBS, DLS, ...)

PETRA IV

Gero Kube, DESY / MDI

MDI Technisches Forum, 24.1.2020

Beam Dynamics in Presence of SR

- quantum excitation •
 - radiation is emitted in discrete quanta >
 - number and energy distribution etc. of photons obey statistical law

spurious dispersion (coupling due to misalignment, ...)

 \rightarrow strong focusing

DLS Design

Engineering Challenges

- R.T. Neuenschwander et al., Proc. IPAC'15, Richmond (VA), USA, TUXC2, p. 1308
- basic idea \rightarrow dispersion function plays important role in determining equilibrium emittance
 - has to be kept focused to small values in dipoles
 - \rightarrow strong focusing quadrupoles between dipoles
 - \rightarrow strong sextupoles to compensate for chromatic aberrations
- strong sextupoles \rightarrow introduce nonlinear effects (beam dynamics)
 - reduction of dynamic aperture and clearance for injection
 - \rightarrow novel injection schemes
- strong magnetic fields
 - bore radius has to shrink
 - \rightarrow aperture for vacuum chamber reduced
- strong magnetic field gradients
 - high orbit amplification factors
 - \rightarrow orbit amplitude sensitive to magnet alignment errors
- high orbit amplification factors + small beam sizes
 - stringent tolerance requirements for magnet alignment + vibration amplitudes
 - \rightarrow tight tolerances for floor / girder vibrations

- vacuum system
 - small beam pipe aperture
 - \rightarrow reduced conductance of vacuum pipe
 - resistive wall impedance becomes issue
 - > may require new materials
 - \rightarrow higher el. conductivity
 - high orbit stability
 - pushing technology of
 - \rightarrow beam diagnostics
 - \rightarrow fast feedback systems, ...

PETRA IV: Overview

- use of old accelerator tunnel
 - \rightarrow HEP structure remains
- > asymmetric ring structure
 - → reduced momentum / dynamic acceptance (estimated: factor 1.5 - 2)
 - \rightarrow beam dynamics safely under control
- > no canted undulator beamlines forseen
 - \rightarrow strong emittance increase
 - \rightarrow additional experimental hall
 - (29 straight ID sections)

MDI Technisches Forum, 24.1.2020

Gero Kube, DESY / MDI

• parameters according to CDR

Parameter	Value (IDs open)	Value (all IDs closed) ¹
Energy E	6 GeV	6 GeV
Circumference C	2304 m	2304 m
Natural emittance ϵ_0	17.4 pm rad	7.6 pm rad
Tunes Q_x, Q_y	164.18, 68.27	164.18, 68.27
Momentum compaction factor α_p	1.485×10^{-5}	1.485×10^{-5}
Natural chromaticities ξ_{x0}, ξ_{y0}	-229.9, -185.1	-229.9, -185.1
Chromaticities ξ_x , ξ_y	+5, +5	+5, +5
Damping partition number J_x	1.536	1.175
Damping times τ_x , τ_y , τ_s	45.6 ms, 70.0 ms, 47.8 ms	19.5 ms, 22.9 ms, 12.6 ms
Rel. energy spread σ_E	$0.678 imes 10^{-3}$	0.903 × 10 ^{−3}
Bunch length σ_s	1.24 mm	1.52 mm
Bunch length σ_t	4.14 ps	5.07 ps
Energy loss per turn U_0	1.317 MeV	4.024 MeV
RF voltage $V_{\rm RF}$	6 MV	8 MV
Bucket half height $\Delta p/p$	8.7%	7.1%
Synchrotron frequency f_s	387 Hz	421 Hz
Hor. beta function β_x at ID	6.86 m	6.86 m
Ver. beta function β_y at ID	2.36 m	2.36 m
Hor. dispersion function D_x at ID	0 m	0 m
Space L for ID	5 m	5 m

¹ For the insertion devices, a 5 m long U32 undulator with a peak field of 0.91 T was assumed.

PETRA IV: Operation Modes

• from PETRA III to PETRA IV

Design Parameter	PETR	АШ
Energy / GeV	6	5
Circumference /m	23	04
Emittance (horz. / vert.) /pm	1300 / 10	
Total current / mA	100	
Number of bunches	960	40
Bunch population / 10 ¹⁰	0.5	12
Bunch separation / ns	8	192

-	• •	
11	iming	structure
-		Stracture

- ▶ general fill pattern \rightarrow 80 x *Bunch Train*
- bunch train duration: 96 ns
 - $\rightarrow 80 \times 96 \text{ ns} = 7.68 \ \mu\text{s} = \text{T}_{\text{rev}}$
- ▶ brightness mode → Bunch Train = 20 bunches 4 ns spacing + 20 ns kicker gap
- **timing mode** \rightarrow Bunch Train = 1 bunch
- injection scheme
 - swap-out on-axis injection
 - \rightarrow dynamic aperture on average larger than 5 σ of injected beam

Stripline Kickers

brightness mode

Stripline Kickers

Injected Beam

timing mode

→ injection rate 0.5 Hz
(timing mode)

Gero Kube, DESY / MDI

MDI Technisches Forum, 24.1.2020

PETRA IV Lattice

- Extremely low emittances \rightarrow strong focusing required
 - consequence
 - \rightarrow large negative chromaticity has to be compensated
 - > needs strong sextupoles
 - \rightarrow negative impact on nonlinear beam dynamics
 - \rightarrow strong decrease of dynamic / momentum aperture
- Hybrid-Multibend Achromat (HMBA)
 - based on 7-bend achromat
 - → ESRF-EBS J. Biasci et al., Sync. Rad. News 27 (2014) 8
 - creation of two dispersion bumps
 - \rightarrow inside bumps: three sextupole families installed
 - \rightarrow helps to significantly reduce sextupole strength
 - cell length $L_{HMBA} = 26.2 \text{ m}$ (PETRA III: $L_{DBA} = 23 \text{ m}$)
 - \rightarrow beamline configuration of PETRA III cannot be preserved
 - \rightarrow 8 HMBA cells / arc

- 64 HMBA cells
- > further emittance reduction via reverse bends \rightarrow in discussion

- straight sections
 - > 4 with space for 10m-IDs
 - remaining straights
 - \rightarrow based on FODO structure

Gero Kube, DESY / MDI

PETRA IV Lattice (2)

- dipole \rightarrow bending
- quadrupole \rightarrow focusing / defocusing
- sextupole \rightarrow "chromatic": chromaticity correction (located in region of high D)
 - "harmonic" : minimize resonance driving modes (even in region of D=0)

free tuning knob for non-linear beam dynamics

• special magnets

- > DQ1, DQ2
 - \rightarrow combined function magnets (dipole + quadrupole)
- > DL1, DL2
 - \rightarrow longitudinal gradient dipole magnet (5 parts with equal lengths)

- > QF6 & 8
 - \rightarrow high gradient quads
 - g = 87.9 T/m; 92.4 T/m

PETRA IV: Lifetime and RF System

- lifetime dominating process \rightarrow Touschek scattering
 - > elastic scattering in transverse plane with momentum transfer in longitudinal plane
 - \rightarrow depends on particle density in bunch
 - acceptable Touschek lifetimes
 - \rightarrow bunch lengthening required
 - \rightarrow 3rd harmonic cavity system
- RF system \rightarrow fundamental RF frequency $f_{RF} = 499.665$ MHz (500 MHz)
 - > from PETRA III to PETRA IV
 - \rightarrow decrease of (i) energy loss / turn: 4.66 MeV \rightarrow 4.02 MeV, (ii) $\alpha_p = 1.20 \times 10^{-4} \rightarrow 1.485 \times 10^{-5}$
 - > reduction of required RF voltage from 20 MV to 8 MV
 - \rightarrow replace 12 (35 years old) 7 cell cavities by single cell cavities
 - HOM damped EU cavity F. Marhauser and E. Weihreter, Proc. EPAC'04, Lucerne (Switzerland), p.979

- \rightarrow 24 single cell cavities
- > 3rd harmonic system
 - \rightarrow 24 single cell cavities, $f_{RF} = 1.49 \text{ GHz}$, U = 2.26 MV
 - \rightarrow active system seems to be essential

Gero Kube, DESY / MDI

PETRA IV: Timeline

• presently: Conceptual Design Report finished, phase of Technical Design Report started

PETRA IV: WP Structure

Gero Kube, DESY / MDI

MDI Technisches Forum, 24.1.2020

PETRA III Instrumentation

PETRA III:

- 249 Button-type BPMs
 - \rightarrow 246 for Orbit
 - \rightarrow 248 Libera Brilliance
- 6 current monitors
- 2 Stripline-BPMs and 2 Button-BPMs for Multibunch Feedback
- 1 Button-BPM for longitudinal Feedback
- 1 Laser Wire Scanner
- 3 Beamlines for Profile and Emittance Diagnostics
- 3 Screens

Transfer Lines:

- 20 BPMs
- 10 Current Monitors
- 4 Wall Gap Monitors
- 11 Screens

PETRA IV Instrumentation

- PETRA IV storage ring
 - in principle the samy type of systems, but...
 - e-BPMs
 - \rightarrow better resolution (TbT, closed orbit)
 - \rightarrow better methods for long-term stabilization
 - \rightarrow increase in number of devices (factor 3 or more)
 - \rightarrow complicated infrastructure (cable trays, ...)

> HF-MOMOs

- \rightarrow overhaul / standarize technical platform
- \rightarrow higher update rate (?)
- \rightarrow less sensitive on environmental influence (?)
- transverse emittance
 - \rightarrow vertical beam size close to PETRA III
 - \rightarrow better sensitivity on small sizes + stability
- bunch length
 - \rightarrow with 3rd harmonic cavities similar \rightarrow re-use streak camera

- beam current (DCCT & FCTs)
 - \rightarrow heat load (HOMs) more critical
- MPS & machine safety
 - \rightarrow extended BLM system (based on XFEL)
 - \rightarrow extended temperature measurement system
 - \rightarrow online dosimetry (based on XFEL)

requires overhaul and standarized technical platform

- > parasitic bunches, photon-BPMs
 - \rightarrow no MDI task @ PETRA III, PETRA IV ???
 - injector chain
 - > e-BPMs
 - beam current (DCCT & FCTs)
 - > screens
 - emittance diagnostics

MDI and PETRA IV: TDR Phase

- demonstrate technical realization
- cost estimate
- \rightarrow documentation \rightarrow Technical Design Report (TDR)
- draft version for description of WP 2.08: tasks and personnel (FTEs)
 - based on monthly assignment of employees to cost centers
 - \rightarrow presently under discussion, not yet finished

- > announcement of "team / project" leaders (responsible persons) will come soon
 - \rightarrow leaders will define their teams (in accordance with group / WP leadership)
 - \rightarrow definition of milestones (for TDR phase)
- tasks

Workpackage leader	BPMs pre-accelerators	BPMs for PETRA IV
G. Kube	3.3 FTEs	5.9 FTEs
K. Wittenburg (deputy)		
	Screens	Emittance
Infrastructure	0.6 FTEs	3.9 FTEs

MDI and PETRA IV: TDR Phase (2)

Beam Current Parasitic Bunches 2.3 FTEs HF-MoMo 0.4 FTEs MPS **0.8 FTEs** amount of FTEs: 22.5 **BLMs** new FTEs: 9 (3 new positions) 3.5 FTEs **Temperature Measurement**

0.3 FTEs

Dosimetry

0 FTEs