Bolko Beutner, 23.02.23

European XFEL

Overview

Introduction

FEL Process

- Corrugated structure passive streaker "Dechirper"
- Transverse deflecting structure

PolariX

Design Overview

Bolko Beutner, 23.02.23

FEL Cartoon

Bolko Beutner, 23.02.23

FEL Cartoon

Bolko Beutner, 23.02.23

FEL Cartoon

Bolko Beutner, 23.02.23

FEL Cartoon

FEL radiation is different in different parts of the bunch

6

European XFEL

Bolko Beutner, 23.02.23

FEL Cartoon

Iasing in slices (cooperation length) – typical hundreds or thousand of slices (image not to scale)

Radiation from each slice depends on **alignment**, **emittance, energy spread**, and **charge**

The more one slice radiates the more energy it looses and the energy spread increases!

Beam properties

Charge and emittance is varying along the bunch especially due to bunch compression configuration

Longitudinal phase-space

time axis

Beam energy and energy spread along the bunch is summarised in the **lognitudinal phase**space

Longitudinal phase space

Longitudinal phase space

Longitudinal phase space

Longitudinal phase space

Bolko Beutner, 23.02.23

Bolko Beutner, 23.02.23

Measurement of longitudinal phase-space after lasing

Example: LCLS

Example: Two-colour FEL

Bolko Beutner, 23.02.23

Bolko Beutner, 23.02.23

Example: Two-colour FEL

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

European XFEL

Beam can be tilted to spurs the first colour except for the centred slices

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

European XFEL

Beam can be tilted to spurs the first colour except for the centred slices

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

Bolko Beutner, 23.02.23

Example: Two-colour fresh slice

Measurement of longitudinal phase-space after fresh-slice lasing

Example: Fresh-Slice Guetg et al. Phys. Rev. Lett. 120, 264802 (2018)

Introduction

Project Goals

- X-band TDS system downstream of undulator line
- ~1fs longitudinal resolution

- Very helpful in SASE setup and tuning (e.g. LCSL operational experience) and essential for advanced lasing schemes.
- Similar to wakefield diagnostic "dechirper" but more versatile and less limited in operation however with much increased complexity.

In addition accurate estimates of the photon pulse duration can be delivered to user stations. European XFEL

possible X-TDS Diagnostic Lines

European XFEL Layout:

Bolko Beutner, 23.02.23

Transverse Deflecting Structure Introduction A transverse deflecting structure (TDS) induces a kick correlated with longitudinal position along the bunch The resulting streaked spot size is correlated with the longitudinal bunch profile

In combination with spectrometer dipoles the energy is measured in orthogonal direction FEL undulator

-3000000000000

Downstream of an FEL undulator such a setup can be used to identify lasing parts of the beam

 $\beta(s_1)$

screen r

e

Bolko Beutner, 23.02.23

Transverse Deflecting Structure (TDS)

At XFEL S-band deflectors are used in the injector and B2, as well as LOLA at FLASH

S-band (3GHz) is not sufficient for femtosecond resolution therefore X-band (12GHz) is used after the undulators

Difficulty due to much higher beam energy than FLASH

Bolko Beutner, 23.02.23

- A passive streaker an be used to study the longitudinal phase-space
- A corrugate structure close to the beam creates transverse wake fields which streakes the beam
- Analysis is complicated the wake depends on the longitudinal profile which is what I want to measure
- Streaking field is naturally synchronised with the beam

Slide from Dijkstal, Tomin, Wohlenberg

European XFEL

Bolko Beutner, 23.02.23

First Successful Operation of "Dechirper" XFEL

1	Logoook enu y. /AFELelog/data/20	The second part of parts of the second se			
	07.09.2022 20:14 not set	Dijkstal	First passive streaker measurements		
I used the CRISP measurement to calibrate the distance between beam and structure. Then I used the reconstruction algorithm to obtain the current profile from a single image. Probably the CRISP averages over many measurements, therefore it does not resolve the small current spikes.					

This elogbook entry was sent to following experts: Guetg Decking

First current profile reconstruction at EXFEL

Slide from Dijkstal, Tomin, Wohlenberg

Bolko Beutner, 23.02.23

PolariX

X-Band system (11995 MHz at FLASH) with variable polarisation

BOC pulse compressor

Used at FLASH and Ares as well as at SwissFEL

Collaboration between CERN, PSI and DESY

Overview PolariX

Collaboration between PSI, CERN, and DESY

FIG. 22. Full TDS prototype.

FIG. 29. The PolariX TDS installed in the XBOX2 test stand.

Bolko Beutner, 23.02.23

TABLE I. Beam parameters, spatial constraints and specifications for the PolariX TDS design for the experiments at DESY and PSI.

	Unit	SINBAD	FLASH2	FLASHForward	ATHOS
Charge	pC	0.5-30	20-1000	20-500 (driver)	10-200
				10-250 (witness)	
Normalized rms emittance	μm	0.1 - 1	0.4-3	2.0-5.0 (driver)	0.1-0.3
				0.1-1.0 (witness)	
rms bunch length	fs	0.2-10	< 3 - 200	50-500 (driver)	<1
				1-10 (witness)	
β -function at the TDS	m	10-50	7-20	50-200	50
Beam Energy	MeV	80-200	400-1350	500-2500	2900-3400
Repetition rate	Hz	10-50	10	10	100
TDS integrated voltage	MV	25-40	30-40	25-30	30-60
Number TDS		2	2	1	2
Maximum length	m	3	< 1.92	< 2	4
TDS iris	mm	4	4	4	4
TDS frequency	MHz	11991.6	11988.8	11988.8	11995.2
Operational temperature	°C	48	62	62	25-35

P. CRAIEVICH et al. PHYS. REV. ACCEL. BEAMS 23, 112001 (2020)

Overview PolariX

Collaboration between PSI, CERN, and DES

80MV

FIG. 22. Full TDS prototype.

FIG. 29. The PolariX TDS installed in the XBOX2 test stand.

Bolko Beutner, 23.02.23

TABLE I. Beam parameters, spatial constraints and specifications for the PolariX TDS design for the experiments at DESY and PSI.

	Unit	SINBAD	FLASH2	FLASHForward	ATHOS
Charge	pC	0.5-30	20-1000	20–500 (driver)	10-200
Normalized rms emittance	$\mu \mathrm{m}$	0.1-1	0.4–3	2.0–5.0 (driver)	0.1-0.3
rms bunch length	fs	0.2-10	< 3 - 200	0.1–1.0 (witness) 50–500 (driver)	<1
β -function at the TDS	m	10-50	7–20	1–10 (witness) 50–200	50
Beam Energy	MeV	80-200	400–1350	500-2500	2900-3400
TDS integrated voltage	MV	25-40	30-40	25-30	30–60
Number 1125 Maximum length	m	2	< 1.92	< 2	2
TDS iris	mm	4	4	4	4
TDS frequency	MHz	11991.6	11988.8	11988.8	11995.2
Operational temperature	°C	48	62	62	25-35

P. CRAIEVICH et al. PHYS. REV. ACCEL. BEAMS 23, 112001 (2020)

XTDS system downstream of SA2 in XS2

Space for 3 RF stations similar to FLASH 1

off-axis screen in dispersive section in downstream transport

Installation not before 2025 but no decision yet

European XFEL

Beam optics for Screen Stations

N. Golubeva

European XFEL

TDS		
β_y	55.526	
μ_γ	1.931	(measured from T3_start
Screen	S1	S2
β_y	5.069	11.787
μ_γ	2.799	3.002
σ_у	13.6 µm	19.5 µm
TDS – Screen		
R34	-12.37	+11.04
Δμ_γ	312 ⁰	385 ⁰
Screen Screen		
β_x	11.184	4.707
σ_x	20.2 µr	m 13.1 μm
D_x	0.161	0.060
σ_x/D_x	12.5e-	5 21.8e-5

Screen Stations

We would need 3 screen stations at:

position similar to the dechirper screen (S2 from previous slide)

At a higher dispersion position (S1) which might collide with a future photon chamber

downstream of the bend dipoles – for slice emittance without dispersion or a high resolution single bunch optics

Possibly a station upstream of the bend but space requirements of other projects (or required screen stations) have to be taken into account.

Summary and Outlook

A X-TDS system would be more versatile and usable then a "dechiper" but more much complex and expensive

- RF feasibility Study ongoing
- ► XS2 (SASE 2)
- ► In photon tunnel (especially SASE 1)
- Integration of possible future undulator lines (SASE 4 and SASE 5)
- Challenging space requirements

3(4) additional screen stations required with on- and off-axis screens

Alternative use of an X-TDS as a replacement for the B2 TDS

Thank You for Your Attention!

Energy resolution

$$\sigma_E = E \frac{\sigma_y}{\eta_y} = E \frac{\sqrt{\beta_{\text{screen}} \varepsilon_n / \beta \gamma}}{\eta}$$

Bolko Beutner, 23.02.23

TABLE I. X-band transverse deflector parameters.

Parameter	Symbol	Value	Unit
rf frequency	f	11.424	GHz
Deflecting structure length	Ĺ	2×1	m
rf input power	Р	40	MW
Deflecting voltage (on crest)	V_0	48	MV
Soft x-ray (e-beam 4.3 GeV)			
Calibration factor	S	400	
Temporal resolution (rms)	σ_{tr}	~ 1	fs
Energy resolution (rms)	$\sigma_{E,r}$	56	keV
Hard x-ray (e-beam 14 GeV)			
Calibration factor	S	128	
Temporal resolution (rms)	σ_{tr}	~ 2	fs
Energy resolution (rms)	$\sigma_{E,r}$	100	keV

Phys. Rev. ST Accel. Beams 14, 120701 (2011)

XS2

Space available for 3 RF station similar to the ARES setup

Available space for support hardware (pulse transformers, controls, ...) upstairs needs to be evaluated

Bolko Beutner, 23.02.23

RF Configuration options

One klystron per structure (e.g. Ares)

Single or double structure configuration per RF station
6MW (or 7.5MW) klystron preferable since a 50MW klystron is very large and difficult to operate in the accelerator tunnel
BOC at each RF station

mplex waveguide system in double configuration

6MW	voltage	14GeV	17.5GeV
3x single 1m	55.5MV	1.43fs	1.60fs
3x double 1m	78.4MV	1.01fs	1.13fs
7.5MW	voltage	14GeV	17.5GeV
3x single 1m	62.0MV	1.28fs	1.43fs
3x double 1m	87.7MV	0.90fs	1.01fs
	15% losses	100m beta at TDS 0.5mm mrad	

