HOM Mitigation

Dealing with Higher Order Modes in Accelerating Structures

Nicoleta Baboi, DESY CAS course on 'RF in Accelerators' Berlin, Germany 30 June 2023

Contents

1. Introduction

2. Avoid HOMs

3. Compensate HOM effects

4. Uses of HOMs

5. Summary

Contents

1. Introduction

Wakefields

2. Avoid HOMs

HOMs

Issues due to HOMs

3. Compensate HOM effects

4. Uses of HOMs

5. Summary

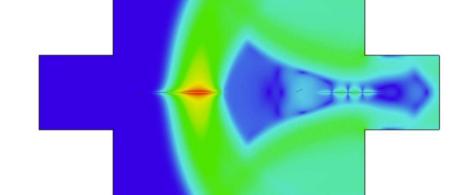
1. Intro: What do you know about HOMs?

From this school only!

DESY. Page 4

1. Intro: Wakefields

The CERN Accelerator School


Brief reminder

Wake: definition from Merriam-Webster
 (https://www.merriam-webster.com/dictionary/wake)
 (among other meanings)

- 1: the track left by a moving body (such as a ship) in a fluid (such as water); broadly: a track or path left
- 2: aftermath (the period immediately following a usually ruinous event)

In an accelerator

- 1: Electromagnetic "track" left behind by the beam
- 2: "Usually ruinous"? → can be
 → one has to know the possible danger in order to avoid it

Courtesy of S.A. Udongwo

⇒ Know your wakefields

1. Intro: Wakefields

The CERN Accelerator School

Brief reminder (2)

- Different types:
 - Geometrical, resistive wall, rugosity
 - Longitudinal or transverse
 - Short or long range
- Short-range wakefields:
 - effects within the bunch: increase in energy spread, emittance
 - Often treated in time domain
- Long-range wakefields:
 - effects from bunch to bunch: increase of multi-bunch energy spread or emittance
 - Usually treated in frequency domain
 → HOMs

see lecture on

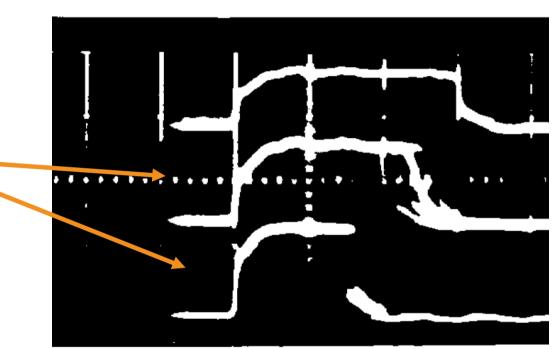
"Impedances and wakefields"
by Andrea Mostacci
and many others!

Single bunch beam breakup ("banana" effect)

W. Barletta, USPAS 2010

This lecture

- Long-range wakes/multi-bunch effects
- Geometrical wakes
- In accelerating structures


1. Intro: Wakefields

Why worry with long-range wakes?

Beam breakup observed at SLAC 1966

pulse cut for currents above some threshold

 $0.5 \mu sec / DIVISION$

R.B. Neal (ed.), The Stanford two mile accelerator, 1968

Found to be due to the beam interaction with one dipole mode

Brief reminder: Longitudinal long-range wakefields

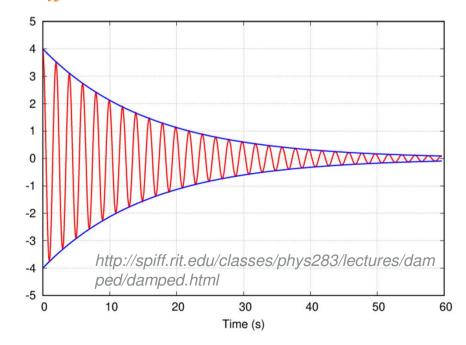
 Longitudinal wakefields can be described as a sum of HOMs for cylindrically symmetric structures

$$W_{||}(s) = \sum_{n} 2k_n \cos\left(\omega_n \frac{s}{c}\right) e^{-\frac{\omega_n}{2Q_n} \frac{s}{c}}$$

n = mode count

Longitudinal loss factor:

$$k_n = \frac{|V_n(r,\omega_n)|^2}{4U_n}$$
 (V/pC)


or equivalent R/Q factor (linac definition):

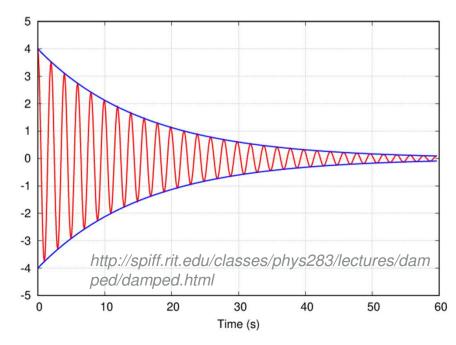
$$k_n = \frac{\omega_n}{4} \left(\frac{R}{Q}\right)_n$$

→ Strength of interaction
 between beam and mode
 → Given only by geometry

s: distance behind the excitation particle

 U_n : energy stored in the mode V_n : voltage seen by the particle

Brief reminder: Longitudinal long-range wakefields (2)


$$W_{||}(s) = \sum_{n} 2k_n \cos\left(\omega_n \frac{s}{c}\right) e^{-\frac{\omega_n}{2Q_n} \frac{s}{c}}$$

The quality factor gives the decay time

$$Q_n = \omega_n \cdot \frac{stored\ energy}{power\ loss}$$

- \rightarrow The material of the structure gives the intrinsic Q_{θ} of a mode
- Additional components (ports) can also damp the HOMs $\rightarrow Q_{ext}$

$$1/Q_{total} = 1/Q_0 + 1/Q_{ext}$$

Brief reminder: Transverse long-range wakefields

 Transverse wakes: strongest contribution is usually given by dipole modes

$$W'_{\perp}(r,s) = \sum_{n} 2k'_{n\perp}(r) \sin\left(\omega_{n} \frac{s}{c}\right) e^{-\frac{\omega_{n}}{2Q_{n}} \frac{s}{c}}$$
 (transverse dipole wake)

Transverse dipole kick factor:

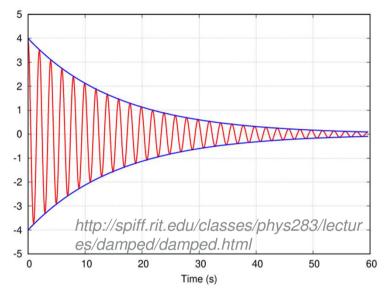
$$k'_{n\perp} = \frac{ck_n}{\omega_n r^2} \text{ (V/pC/mm}^2)$$

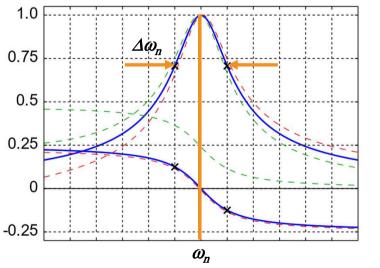
(normalized to beam offset squared, sometimes also to the structure length)

 \Rightarrow It is enough to calculate the longitudinal loss factor (or R/Q) (Panofsky-Wenzel theorem)

Brief reminder: Characteristics of resonant modes

- Resonant frequency $f_n = \omega_n/2\pi$
- Loss factor k_n or equivalent $(R/Q)_n$

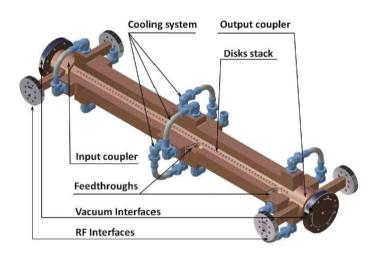

$$k_n = \frac{|V_n(r,\omega_n)|^2}{4U_n}; k_n = \frac{\omega_n}{4} \left(\frac{R}{Q}\right)_n$$

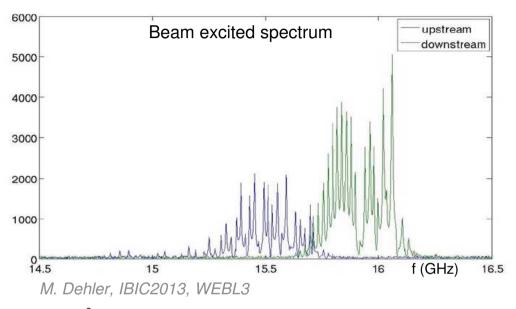

• Quality factor: $Q_n = \omega_n \cdot \frac{stored\ energy}{power\ loss}$

$$Q_n = \omega_n/(\Delta\omega_n); \tau_n = 2Q_n/\omega_n$$

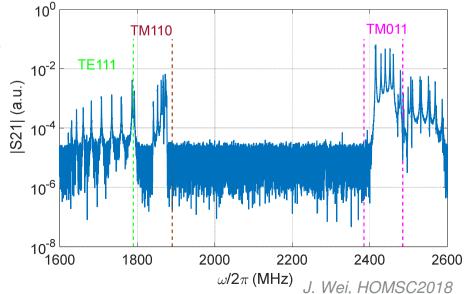
Field distribution, polarization etc.

Know your HOMs!

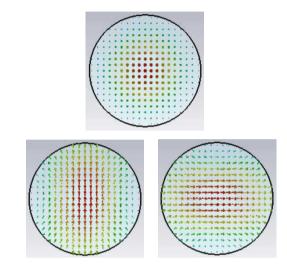



https://en.wikipedia.org/wiki/Resonance

Brief reminder: HOM spectra (examples)


X-band structure at the Swiss-FEL

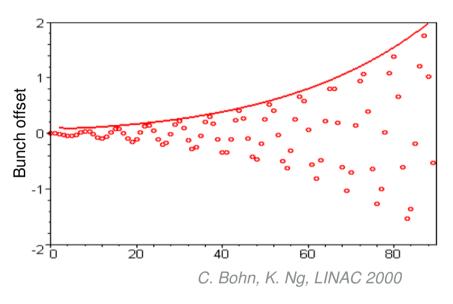
TESLA cavity at FLASH/European XFEL



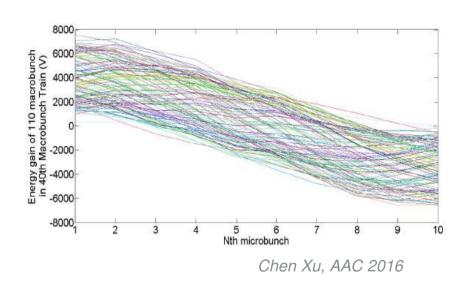

DESY

Brief reminder: Dipole modes

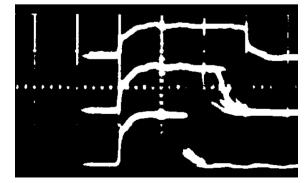
- Monopole modes:
 - Always excited
- Dipole, quadrupole modes etc.
 - Excited only by off-axis beams
 - Come in pairs (polarizations)
 with equal frequencies for
 circularly symmetric structures
- Zoom into measured spectrum (dipole mode)
 - Frequency split due to asymmetries
 - Polarization not always horizontal and vertical


J. Wei, FEL Seminar, DESY, 20.08.2019

1. Intro: Issues due to HOMs

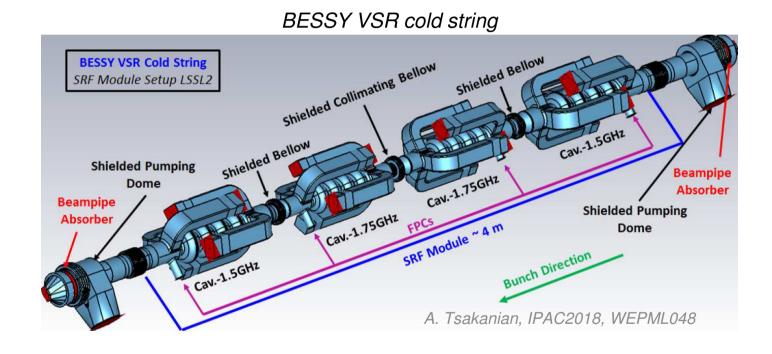


HOM effects on the beam


 Transversely: increase in multi-bunch emittance

Longitudinally: increase in multi bunch energy spread

Extreme case: beam breakup


Worst effects at low energies

1. Intro: Issues due to HOMs

Further HOM effects

Power damped into the accelerating structures or other components

 BESSY VSR: HOM power estimated: of the order of 1 kW propagating out of the cold string; tens of W in each HOM load

1. Intro: HOM Mitigation

Ways to deal with HOMs

Avoid them

Compensate their effects

Use them

Contents

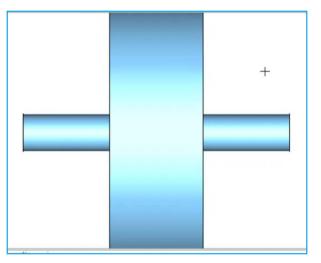
1. Introduction

2. Avoid HOMs

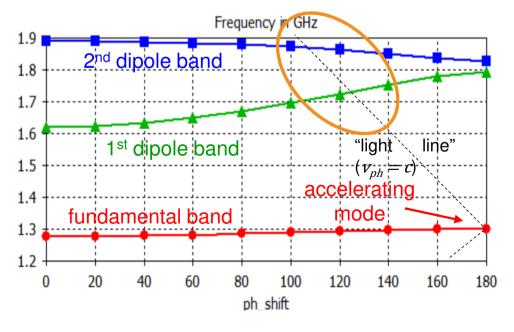
Accelerating Structure Design

3. Compensate HOM effects

Accelerator Design


4. Uses of HOMs

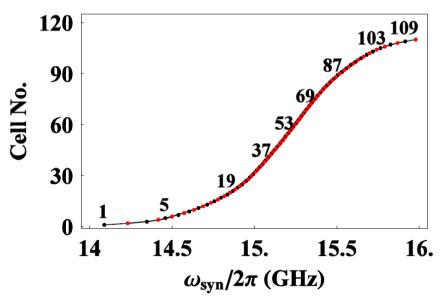
5. Summary


Geometry

- Optimize the cell geometry for low loss factors for HOMs, while aiming at high value for the accelerating mode
 - Remember: the loss factor depends only on the geometry

Courtesy of S.A. Udongwo

 For multi-cell structures pay particular attention to the quasi synchronous modes Dispersion diagram of a TESLA cavity (single cell simulation with periodic boundaries)



Geometry (2)

- Avoid to have HOMs with frequency matching a bunch harmonics
 - That would give a resonant amplification along bunch train
- Detune cells along (long) structure
 - Vary cell dimensions along a NC structure
 ⇒ overall HOM effects decohere

Interleaving of cell frequencies of a structure for CLIC

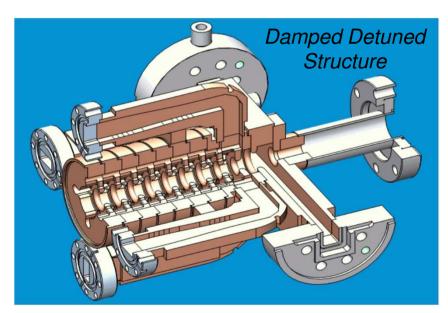
R.M. Jones, CAS 2010

Material

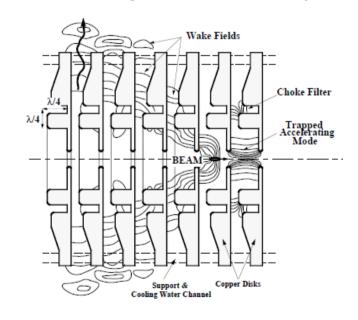
- Choose material of the cavity walls for low HOM quality factors Q_{0} .
- However this is decided by the purpose of the cavity: choice of technology, type of beam to be accelerated, etc.
- This determines the Q_{θ} of the HOMs

HOM damping: Requirement

Add something to extract HOM fields, but leave accelerating fields untouched


$$1/Q_{total} = 1/Q_0 + 1/Q_{ext}$$

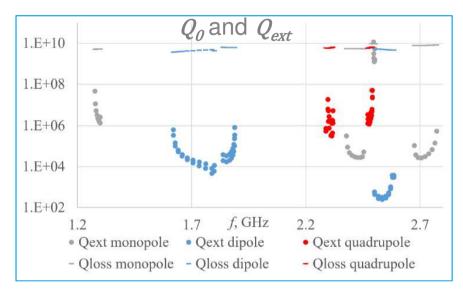
- if $Q_{ext} \ll Q_0 \Rightarrow Q_{total} \cong Q_{ext}$
- How much damping is enough?
- Requirement: from BBU models or beam dynamics calculations e.g.
 - lecture on "Longitudinal instabilities & Intensity effects" by Elena Shaposhnikova
 - W. Lou et al., PRAB-ST 22, 112801 (2019)
 - N. Baboi, EPAC2000, THP3B05


HOM damping in each cell

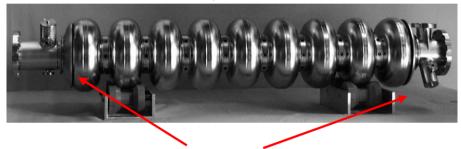
- Add ports in each cell: waveguides, couplers
- Notch filter at the accelerating frequency

R.M. Jones, CAS 2010

HOM-free linear accelerating structure using choke mode cavity

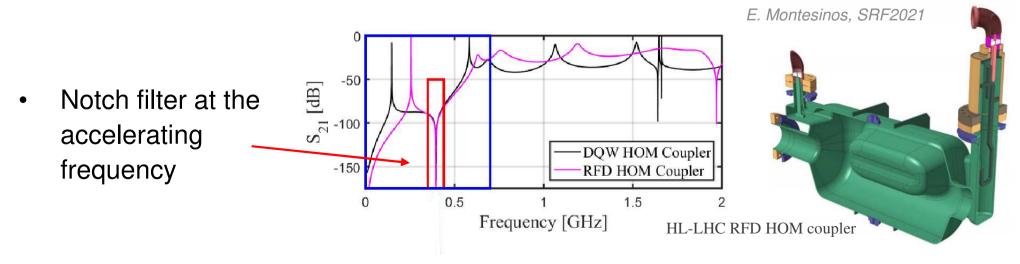

T. Shintake, PAC'95

Particularly good for trapped modes in detuned structures



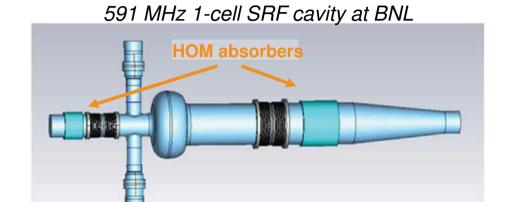
HOM damping at end of structure

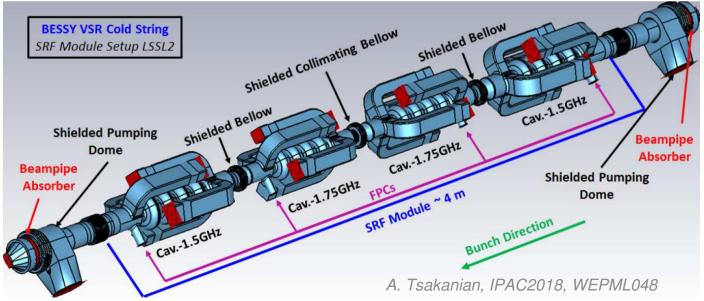
Add ports at the end of the accelerating structure: waveguides, couplers



TESLA cavity used in MESA

HOM couplers


S. Glukhov, PhD thesis, TU Darmstadt, 2022


HOM damping in the beam pipe

- Damping materials:
 HOM absorbers in the beam pipe
- The accelerating frequency is below the cut off of the beam pipe

R. Rimmer, eeFACT2022, WEXAS0101

BESSY VSR cold string

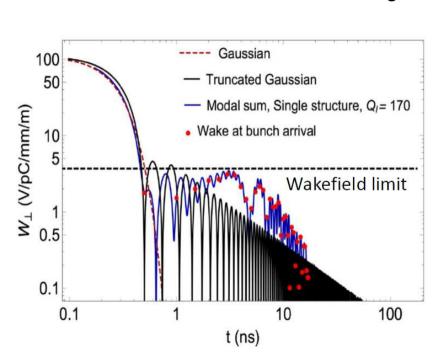
2. Avoid HOMs: Accelerator design

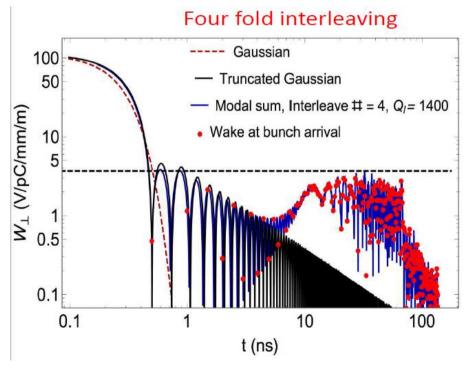
Accelerator design

- Design optics such that the HOM effects are not dramatic
 - E.g. Recirculation Arcs Lattice Optimization in ERLs
 - Add non-linear elements etc.

- Choose bunch frequency (or design accelerator) such that the strongest HOMs are not at bunch multipoles, so that they do not add up coherently
 - Often not a real option

S. Glukhov, PhD thesis, TU Darmstadt, 2022


2. Avoid HOMs: Accelerator design



Structure interleaving

 Make 2 or more slightly different designs (classes) for the accelerating structure such that the long-range wakefields do not add up coherently from structure to structure

Interleaving for CLIC structures

N. Joshi, EuCARD-2 Meeting, 2017

Contents

1. Introduction

2. Avoid HOMs

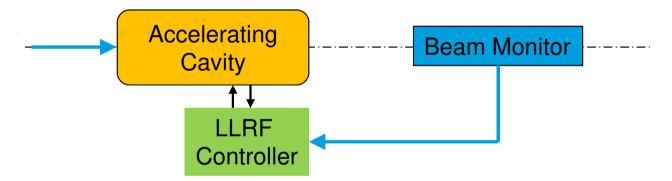
3. Compensate HOM effects

4. Uses of HOMs

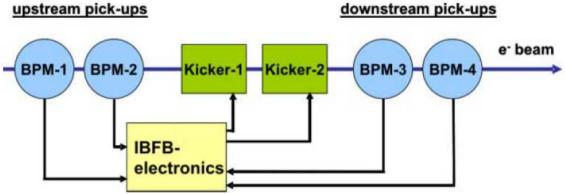
5. Summary

Fast Feedbacks

Beam Alignment


Cavity detuning and retuning

3. Compensate HOMs: Fast Feedbacks

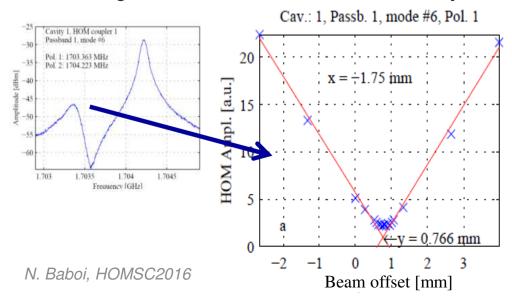

Compensation of spread in bunch arrival time and beam offset

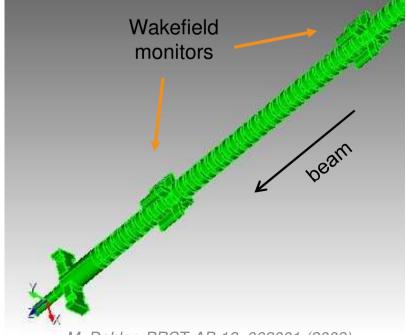
- Longitudinal HOMs induce a variation of the bunch energy, and therefore the bunch arrival time (or beam phase)
 - Measure beam arrival time, energy etc. → feedback to LLRF

 Transverse HOMs induce a spread in the bunch orbit (multi-bunch emittance growth)

Fast orbit feedback

V. Schlott, EPAC 2006, THPCH096


3. Compensate HOMs: Beam Alignment


Beam alignment to avoid transverse HOM excitation

- Transverse effects mainly from dipole modes
- The dipole fields depend only on the offset of the exciting bunch
- → Monitor dipole modes through couplers, and align the beam to minimize their strength

Amplitude of dipole mode signal versus exciting bunch offset for a TESLA cavity

Dedicated alignment monitors in a X-band structure

M. Dehler, PRST-AB 12, 062001 (2009)

3. Compensate HOMs: Retuning

Cavity detuning and retuning

- It may happen that one HOM unluckily hits a beam spectrum line
 - ⇒ Resonant amplification of HOM field
- Detune and retune the operating mode back to the resonance
 - HOMs move because of small inelastic deformation

Detuning and retuning a 1.3 GHz ILC-type cavity

F, MHz	ΔF, kHz	δF, Hz	Passband
1300	90	0	1Monopole
1600.093	-218	360	1Dipole
1604.536	-215	240	1Dipole
1607.951	-214	360	1Dipole
1612.189	-210	360	1Dipole
1621.344	-211	240	1Dipole
1625.458	-208	370	1Dipole
1830.836	-185	370	2Dipople
1859.882	-36	120	2Dipople

N. Solyak, IPAC10, TUPEA020

Contents

1. Introduction

2. Avoid HOMs

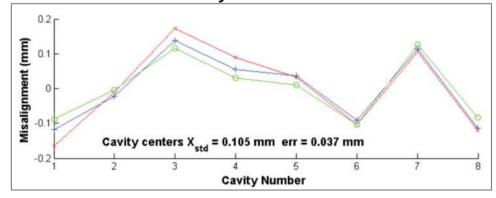
3. Compensate HOM effects

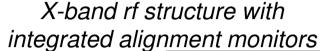
4. Uses of HOMs

5. Summary

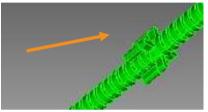
Diagnostic of Accelerating Structures

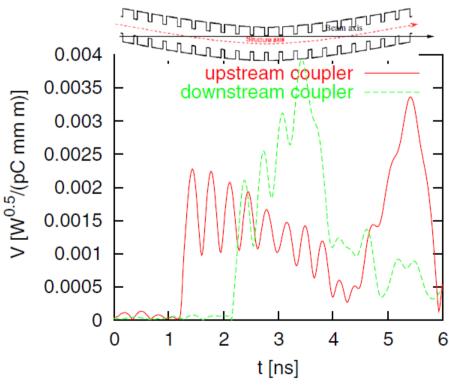
Diagnostic of Beam


4. Use HOMs


Diagnostic of accelerating structures


- Monitor HOMs through damping couplers
 - Measure cell alignment
 - Due to varying cell dimensions along detuned structure, the modes are localized in part of it giving information on different cells
 - Monitor SC cavity alignment in cryo-module
 - Monitor dipole mode

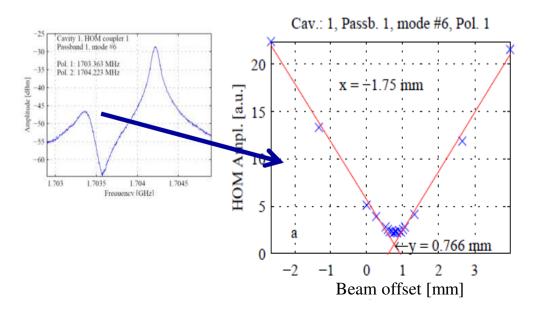

Transverse offset of SC TESLA cavities in cryo-module



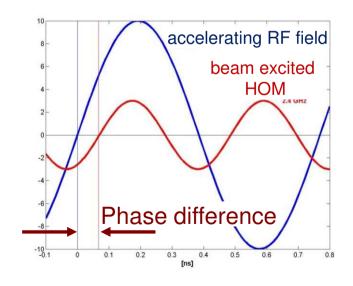
S. Molloy, Meas. Sci. Technol. 18, 2314 (2007)

M. Dehler, PRST-AB 12, 062001 (2009)

4. Use HOMs



Diagnostic of beam


Monitor selected HOMs (e.g. with downconverting electronics)

Beam position measurement with dipole modes (like with a cavity BPM)

RF phase measurement wrt to beam

N. Baboi, HOMSC2016

Contents

1. Introduction

2. Avoid HOMs

3. Compensate HOM effects

4. Uses of HOMs

5. Summary

Summary

The CERN Accelerator School

HOM mitigation

- HOMs can decrease the beam quality to an unacceptable degree
- Avoid HOM excitation
 - Design of accelerating structure
 - Design of accelerator
- Compensate excited HOMs
 - Feedbacks
 - Beam alignment
 - Detune and retune cavity
- Use the excited HOMs
 - Measure the cell or cavity alignment
 - Measure beam offset, beam phase

- Only a selection of methods was shown
- There are many more methods to mitigate HOMs

Know your HOMs!

Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Nicoleta Baboi

Machine Diagnostics and Instrumentation MDI

nicoleta.baboi@desy.de

+49 40 8998 3052