

Kay Wittenburg, MDI Deutsches Electronen Synchrotron Hamburg, Germany

Profile Monitors in the Proton Accelerators

• DESY III:

- » Wire Scanner, very old and new
- » Residual Gas Ionization (Prototype)

PETRA II:

» Residual Gas Ionization

» New Wire scanners (LEP type)

• HERAp:

- » Residual Gas Ionization
- » Wire Scanners, old and new
- » (Synchrotron Radiation)

Residual Gas Ionization Profile Monitor in DESY III

Prototype with no MCP
Amplification by SIT Camera

Residual Gas Ionization Profile Monitor in DESY III

Residual Gas Ionization Profile Monitor in DESY III

Residual Gas Ionization Profile Monitor

•The "light" electrons are much more sensitive to the space charge of the beam than the "heavy" ions

Simulation of space charge distortion

Helmholtzcoil

B_{focus} : Cyclotron frequency = time of flight

Wire $Ø = 100 \,\mu m$

Helmholtzcoil

Test in Lab with a 100 mm wire

DESY III

Beam width versus momentum

1.5 mm offset

Measurement of the transversal energies of the Electrons / Ions

Distortion due to secondary emission from cathode

Changing the cathode voltage

Distortion due to space charge of bunches

Changing the grid voltage

Space Charge Correction

by Th. Schotmann

$$FWHM_{meas} = \sqrt{2\ln 2} \sqrt{\sigma_{real}^2 + \alpha \cdot \frac{I \cdot U_a}{e \cdot N_b \cdot c} \cdot r_p \cdot d_g} \cdot \sqrt{\frac{2m_p c^2}{e \cdot V_g}} \cdot \sqrt{\frac{\beta_x}{\beta_z}}$$

with:

$$\begin{split} I &= beam \ current \\ N_b &= number \ of \ Bunches \\ U_a &= \ circumference \ of \ the \ accelerator \\ r_p &= \ classical \ proton \ radius \\ m_p &= \ proton \ mass \ (\ if \ H_2 \ ions) \\ V_g &= \ Potential \ between \ grids \ (Extraction \ field) \\ \beta_x &= \ value \ of \ beta \ function \ at \ monitor \ (direction \ of \ measurement) \\ \beta_z &= \ value \ of \ beta \ function \ at \ monitor \ (perp. \ to \ direc. \ of \ meas.) \\ \alpha &= \ fit \ parameter \ = \ 1.96 \end{split}$$

700 μ A \approx 10¹¹ Protons/bunch in HERAp

Distortion due to electron optic

Profile distortion: focussing effect < 50 μ m

Residual Gas Ionisation Profile Monitor in PETRA II and HERAp

- » Vacuum 10⁻⁹ mbar
- » 1 60 210 Bunches => << 0.1 160 mA
- » 7.5 40 820 GeV/c
- » beam width << 1 mm, length 30 3 cm</p>

First circulating beam in HERAp (1991)

Residual Gas Ionisation Profile Monitor in HERAp

- Continuous observation
- no absolute width measurement
- observation of changes at injection and ejection (PETRA)

Residual Gas Ionisation Profile Monitors at Petra II and HERAp

 Ok. up to 220 μA/bunch (=ca. 3·10⁹ Protons/bunch) incl. space charge correction

Fast Evolution of the normalized emittance and the beam width in DESY III measured with a linear sensor and a local gas bump.

Higher order mode losses in the IPM

For the long proton bunches no problem

Wire Scanners at DESY

- » linear, pressed air
- » v = 1m/s
- » Carbon wire
- » Ø = 7 μm
- » Szintillator + Photomult. readout

measured position vs. linear fit

No broken or burned wire,no detectable beam loss or emittance blow-up! \odot \odot \odot

Wire Scanner in HERAp

- Movement by pressed air
- Wire speed: 1 m/s
- Wire material : Carbon
- Wire diameter: 7 µm
- Signal: Scintillator + SEM

Wire scanners at HERAp

- Since start of HERA (1990) 3 broken or burned wire, no detectable beam loss or emittance blow up due to wire-scans!
- 8 Increased background measured by the experiments.
- 8 Specific Lumi agrees within 0-20% with experiments

Wire Scanners in HERAp - Fits

Single bunch emittance measurement with the HERAp wire scanner

- $\sigma = 5.15 \text{ mm}$
- ϵ_n 23.92 π mm mrad
- p= 40 GeV

Trigger logic for the single bunch emittance measurement

The LEP Wire Scanner in all circular accel. and in TTF

Advantages:

- Variable speed -> Tail measurements
- Small synchronization jitter
- Small size
- Very precise (<2 microns)
- Suitable for all accelerators in DESY

The LEP Wire Scanner in PETRAp

Triggered scan for TTF and DESY III

• Synchronization jitter < ±200 m

Temperature of the wire (v=1m/s)

	Num. of part.	Typ. Beam diam.	Temp. after scan [C]	Eqi Temp [Celsius]
HERAp	1 *10^13	0.7 mm	4000	4600
HERAe	6.5 * 10^12	0.2 mm	6500	4500
PETRAp	4.8*10^12	2 mm	1300	3000
PETRAe	1.5*10^12	0.1 mm	6300	5700
DESYIII	1.2*10^12	1 mm	3400	5300
TTF fast	2.8*10^13	0.05 mm	4000	7400
TTF slow	2.8*10^13	0.05 mm	230 000	2000

Melting temperature = 3500 °C for Carbon = 1700 °C for Quartz

The wire in DESY III still exists with 200 mA = $1.25 \cdot 10^{12}$ p In HERA 3 burned wires in the last two years

Wire Vibrations

- Wire mounting not fixed
- Black line = Fit of Gauss + Sinus
- White line = fit of real beam

Photomultipliers for wire scanners

type	sensitivity [microA/Im]	ampl.	Photom.	Stages	max lin. [mA] Diam. [mm]	volt [kV]	continuous curr. [mA]	rise time [ns]	used at
R2238	60	5*10^5	Bi	12		76	i 1.5	0.1	5.5	CERN PS
XP 2243/B	160	2*10^5	tri	6	20) 44	2.5	0.2	1.6	CERN SPS/DESY
XP 2203 B	165	4*10^6	tri	10	20) 44	1.2	0.2	3.5	Tevatron
XP2020	70	2*10^8	Bi	12	28) 44	3	0.2	1.5	SLAC
			tri = trialkali Photokathode with lower resistance than bialkali							

• Good linearity at high peak output

High peak current voltage divider

Synchrotron Radiation (edge effect) in HERAp

Synchrotron Radiation (edge effect) in HERAp

The first spot of SR-light

Spatial Resolution

Measurement with Laser and 3 slits (500 μ m)

