

Fachhochschule Kiel Institut für Mechatronik und Feinwerktechnik

Aufbau und Test eines Synchrotronlicht-Monitors zur Injektionsoptimierung für HERAe

Diplomarbeit von Christian Wiebers

Ausgearbeitet bei:Deutsches Elektronen – Synchrotron DESYBetreuender Professor:Prof. Dr. Ing. Felix KrullBetreuer in dem Institut:Dr. Gero Kube

Kiel, Dezember 2004

Danksagung

Bedanken möchte ich mich bei Herrn Prof. Dr. Krull für die gute Betreuung während der Diplomarbeit.

Herrn Wittenburg, Herrn Dr. Kube, Herrn Fischer, Herrn Priebe, Frau Vilcins, Frau Siemens und Frau Speck gilt mein besonderer Dank für die geduldige, freundliche und fachliche Unterstützung bei der Erfüllung der Arbeit.

Außerdem möchte ich mich auch bei den restlichen Mitarbeitern der Gruppe MDI, sowie bei den Mitarbeitern in den anderen Gruppen und den Werkstätten, die sich an der Fertigung des Synchrotronlicht-Monitors beteiligt haben, bedanken.

Zusammenfassung

Zur Kontrolle der transversalen Strahldimensionen werden unter anderem Monitore eingesetzt, die die vom Teilchenstrahl emittierte Synchrotronstrahlung im optischen Spektralbereich messen. Diese Strahlung entsteht immer dann, wenn geladene Teilchen, wie z.B. Positronen/Elektronen im Beschleuniger HERA, auf einer gekrümmten Bahn einen Umlenkmagneten durchlaufen. Der Vorteil von Synchrotronstrahlung ist, dass sie stark kollimiert ist, d.h. die Ausdehnung des vom Monitor gemessenen Lichtreflexes spiegelt in guter Näherung das Strahlprofil des Positronen-/Elektronenstrahls wieder.

Beim Transfer des Positronenstrahls aus dem Vorbeschleuniger PETRA in HERA kann es durch Fehlanpassungen der Magnetstruktur zu Strahlverlusten kommen, welche zu einer Verschlechterung der Injektionseffizienz der Positronen/Elektronen führt. Damit verbunden ist eine Veränderung des Strahlprofils von Umlauf zu Umlauf des Teilchenstrahls, die über die Diagnose des Synchrotron-Lichtreflexes gemessen werden kann.

Ziel dieser Diplomarbeit ist der Aufbau einer Meßstation zum Nachweis dieser Strahlprofil-Schwingungen. Dazu soll unter Anleitung ein vorhandener Meßplatz erweitert und umgebaut werden, der bislang zur Messung der Strahlbreiten im Standardbetrieb dient.

Durch den Abgleich der Aufgabenstellung und der Anforderungsliste wird zur Findung einer optimalen Gesamtlösung, die Gesamtfunktion des Synchrotronlicht-Monitors in Teilfunktionen unterteilt. Für die Teilfunktionen werden dann Lösungsprinzipien gesucht, bewertet und ausgewählt. Anschließend werden Versuche und Berechnungen durchgeführt, deren Ergebnisse für den konstruktiven Fortgang dienen. Abschließend wird das optische Abbildungssystem, die fernsteuerbare Positioniereinheit, die Monitor-Box und die elektrische Verdrahtung für den Synchrotronlicht-Monitor zur Injektionsoptimierung dargestellt und beschrieben.

Inhaltsverzeichnis

Zusammenfassung	3
I. Abbildungsverzeichnis	7
II. Tabellenverzeichnis	10
III. Abkürzungsverzeichnis	11
1. Einführung	12
1.1 Der Teilchenbeschleuniger HERA	12
1.2 Die Gruppe MDI	13
1.3 Aufgabenstellung	14
2. Allgemeine Grundlagen und Systematiken	18
2.1 Strahlung im Teilchenbeschleuniger HERA	
2.1.1 Entstehung der Synchrotronstrahlung	18
2.1.2 Entstehung der Untergrundstrahlung	24
2.2 Schäden durch Untergrundstrahlung	24
2.3 Schutzmöglichkeiten vor Untergrundstrahlung	25
3. Konstruktionsmethodik	27
3.1 Anforderungsliste	27
3.2 Untergliederung in Teilfunktionen	34
3.3 Lösungsfindung	35
3.4 Bewertung	
3.4.1 Gewichtung der Bewertungskriterien	
3.4.2 Bewertung der Teilfunktionen	
3.5 Ergebnis	48
4. Die Versuche und Berechnungen	51
4.1 Die Dimensionierung des Abbildungssystems	51
4.1.1 Die horizontale und vertikale Profil-Vergrößerung	
4.1.2 Die Auswertung	57
4.2 Die Durchbiegung	57
4.2.1 Beispielrechnung für statische Durchbiegung der Grundplatte_2	58
4.2.2 Die Auswertung	60
5. Gesamtfunktion	61
6. Das optische Abbildungssystem	63
6.1 Die Strahlpositionierung	64

6.2 Die Strahlvergrößerung	65
6.2.1 Die vertikale Vergrößerung	66
6.2.2 Die horizontale Vergrößerung	67
6.2.2.1 Der Strahlrotator	68
6.2.3 Der Photomultiplier	69
6.3 Die Aufnahme des Strahlprofils	71
6.3.1 Bildübertragung und die elektrischen Anschlüsse der Zeilenkamer	a72
6.3.2 Das Trigger-System	74
2. Die fernsteuerbare Positioniereinheit	77
7.1 Der Antrieb zur Positionierung: rotartorisch	77
7.1.1 Der Klappspiegel	77
7.1.2 Das Goniometer	78
7.1.3 Die technischen Daten	79
7.2 Der Antrieb zur Positionierung: translatorisch	80
7.2.1 Die technischen Eigenschaften	82
7.2.2 Die technischen Daten	86
7.3 Der Antriebsmotor	86
7.3.1 Die Pinbelegung der Motorbuchse	87
7.3.2 Die technischen Eigenschaften	88
7.3.3 Die technischen Daten	88
7.4 Der Antriebsstopp	88
7.5 Die Steuerungseinheit	89
7.5.1 Die elektrische Installation des TLC 511F	90
7.5.1.1 Der Netzanschluß	91
7.5.1.2 Der Motoranschluß	92
7.5.1.3 Der Anschluß der 24V-Versorgungsspannung	93
7.5.1.4 Der CAN-Bus Anschluß	94
7.5.2 Die technischen Daten der Positioniersteuerung TLC 511F	95
3. Die Monitor-Box für den Synchrotronlicht-Monitor	96
8.1 Die Monitor-Box	97
8.1.1 Die Rahmenkonstruktion	97
8.1.2 Befestigung der Neutronenabschirmung an die Rahmenkonstrukti	on 98
8.1.3 Die Öffnungsklappen der Monitor-Box	

8.2 Der Einbau der Monitor-Box im Beschleunigertunnel HERA10	00
9. Die Schematische Darstellung der Verdrahtung 10	05
10. Die Schlußbetrachtung und der Ausblick10	08
IV. Literaturverzeichnis 1	10
V. Internetverzeichnis1	11
VI. Erklärung der eigenständigen Arbeit1	12
VII. Anhang A: Technische Datenblätter1	13
VIII. Anhang B: Technische Zeichnungen 14	40

I. Abbildungsverzeichnis

Abb.	1-1 Die DESY-Beschleuniger	. 13
Abb.	1-2 Das Strahlprofil ohne Zylinderlinse	15
Abb.	1-3 Das Strahlprofil mit Zylinderlinse	. 15
Abb.	. 1-4 Die Prinzipskizze des Emittanz-Monitor	. 16
Abb.	1-5 Die Prinzipskizze des Synchrotronlicht-Monitors	17
Abb.	2-1 Nichtrelativistisch: v < c oder β = v/c < 1	. 19
Abb.	. 2-2 Ultrarelativistisch: v \approx c oder $\beta \approx$ 1	. 19
Abb.	2-3 Das Spektrum der Synchrotronstrahlung	. 22
Abb.	2-4 Abschätzung der Länge des elektromagnetischen Pulses, den ein relati-	
	vistisches Elektron während des Vorbeifluges beim Beobachter erzeugt.	. 23
Abb.	2-5 Die Neutronen-Abschirmung	. 26
Abb.	. 3-1 Untergliederung der Gesamtfunktion in Teilfunktionen	. 34
Abb.	. 4-1 Das Synchrotron-Strahlprofil	. 52
Abb.	. 4-2 Versuchsaufbau für die horizontale / vertikale Strahlprofil-Vergrößerung.	52
Abb.	. 4-3 Gewichtsverteilung auf der Grundplatte_2	. 57
Abb.	4-4 Statische Durchbiegung	. 58
Abb.	. 4-5 Axiales Trägheitsmoment	. 58
Abb.	5-1 Darstellung der Gesamtfunktion des Synchrotronlicht-Monitors	. 61
Abb.	. 6-1 Das gesamte optische Abbildungssystem	63
Abb.	6-2 Die Strahlpositioniervorrichtung	. 64
Abb.	. 6-3 Anordnung der optischen Komponenten für die Strahlvergrößerung	66
Abb.	. 6-4 Anordnung der Vergrößerungsoptik	. 66
Abb.	. 6-5 Halte- und Justagevorrichtung	. 66
Abb.	. 6-6 Anordnung der horizontalen Vergrößerungsoptik	. 67
Abb.	6-7 Der Strahlrotator	. 68
Abb.	. 6-8 Anordnung des Photomultipliers auf der Montageplatte	. 69
Abb.	. 6-9 Haltevorrichtung für Photomultiplier	. 70
Abb.	. 6-10 Montageanordnung für Photomultiplier	. 70
Abb.	. 6-11 Zeilenkamera mit Haltevorrichtung für die Zylinderlinse	. 71
Abb.	. 6-12 Schematische Darstellung der Blei-Box mit Zeilenkamera	. 72
Abb.	. 6-13 Schematische Verdrahtung der Bildübertragung	. 72
Abb.	. 6-14 Schematische Darstellung des 24-Bit Wandlers	. 73

Abb.	6-15 Anordnung der minimalen Bunche im Beschleuniger	74
Abb.	6-16 Injektions-Brücke von PETRAe nach HERAe	74
Abb.	6-17 Zeitlicher Verlauf von Umlauf- und Injektions-Triggers	75
Abb.	6-18 Das Grundprinzip des Trigger-Systems	75
Abb.	7-1 Die Anordnung der rotatorischen Positioniereinheiten	. 77
Abb.	7-2 Schematische Funktions-Darstellung des Klappspiegels	.78
Abb.	7-3 Schematische Funktions-Darstellung des Goniometers	78
Abb.	7-4 Die Montage des Goniometers in der Monitor-Box	79
Abb.	7-5 Gesamtdarstellung der translatorischen Positioniereinheit	. 80
Abb.	7-6 Montage des Lineartisches Hub 120mm mit der Grundplatte_1	. 81
Abb.	7-7 Montage des Lineartisches Hub 90mm mit der Grundplatte_2	. 81
Abb.	7-8 Sicherheitsabstand und Hub des LT-100	. 82
Abb.	7-9 Ablaufgenauigkeit der Lineareinheit LT-100	83
Abb.	7-10 Darstellung der zentralen Schmierstelle	. 85
Abb.	7-11 Motoranbau gerade	86
Abb.	7-12 Motoranbau horizontal links, innen	. 86
Abb.	7-13 3-Phasen-Schrittmotor Typ: VDRM 368	. 86
Abb.	7-14 Motorbuchse	87
Abb.	7-15 Die Montagedarstellung des Endschalters	. 89
Abb.	7-16 Die Positioniersteuerung TLC 511F	89
Abb.	7-17 Die Geräteübersicht der Positioniersteuerung TLC 511F	91
Abb.	7-18 Die Netzanschlußbelegung	92
Abb.	7-19 Der Motoranschluß an die Positioniersteuerung TLC 511F	. 92
Abb.	7-20 Die 24V-Versorgung vom Netzteil zur Signal-Schnittstelle	.93
Abb.	7-21 Die Darstellung des Sub-D-Steckers und der Sub-D-Buchse	. 94
Abb.	8-1Die Darstellung des Tunnelquerschnitts mit eingebauter Monitor-Box	96
Abb.	8-2 Die Rahmenkonstruktion	97
Abb.	8-3 Die Monitor-Box	. 99
Abb.	8-4 Die Darstellung der Befestigung für die Gasdruckfedern	100
Abb.	8-5 Aufhängevorrichtung für die Monitor-Box	101
Abb.	8-6 Befestigungsanordnung der zusätzlichen Doppel-T-Träger	102
Abb.	8-7 Die Befestigungsanordnung der drei Verbindungsstangen	103
Abb.	8-8 Der Halte-Rahmen für die Monitor-Box	104

Abb.	9-1	Die schematische	Darstellung	der Verdrahtung.	

II. Tabellenverzeichnis

Tab. 2-1 Schäden die durch	Untergrundstrahlung entstanden sind	25
Tab. 3-1 Anforderungsliste: I	3latt 1 von 7	27
Tab. 3-2 Anforderungsliste: I	3latt 2 von 7	28
Tab. 3-3 Anforderungsliste: I	3latt 3 von 7	29
Tab. 3-4 Anforderungsliste: I	3latt 4 von 7	30
Tab. 3-5 Anforderungsliste: I	3latt 5 von 7	31
Tab. 3-6 Anforderungsliste: I	3latt 6 von 7	32
Tab. 3-7 Anforderungsliste: I	3latt 7 von 7	33
Tab. 3-8 Lösungsfindungen	für die Teilfunktionen	. 35
Tab. 3-9 Gewichtung der Be	wertungskriterien	. 37
Tab. 3-10 Die Werteskala		38
Tab. 3-11 Bewertungs-Richt	werte	38
Tab. 3-12 Bewertung für der	Antrieb zur Positionierung	. 39
Tab. 3-13 Bewertung für die	Steuereinheit	40
Tab. 3-14 Bewertung für der	Antriebsmotor	. 41
Tab. 3-15 Bewertung für der	Antriebsstopp	42
Tab. 3-16 Bewertung für die	Strahlvergrößerung	43
Tab. 3-17 Bewertung für die	90° Strahldrehung	44
Tab. 3-18 Bewertung für die	Aufnahme der Abbildung	.45
Tab. 3-19 Bewertung für die	Abschirmung von Strahlung	46
Tab. 3-20 Bewertung für die	Vermeidung vor Erschütterung	.47
Tab. 3-21 Ergebnis für die te	chnisch beste Lösung	48
Tab. 3-22 Ergebnis für die te	chnisch beste Lösung	49
Tab. 4-1 Eingesetzte Geräte	für horizontale / vertikale Vergrößerungsversuche	. 53
Tab. 4-2 Die Meßergebnisse	für die horizontale Vergrößerung m = 8	.56
Tab. 4-3 Die Meßergebnisse	für die vertikale Vergrößerung m = 21	. 56
Tab. 7-1 Genauigkeitsklasse	der geschälten IT-7 Spindel	84
Tab. 7-2 Die Pinbelegung de	r Motorbuchse	87
Tab. 7-3 Die Anschlußbeleg	ung für den Motor an die Positioniersteuerung	93
Tab. 7-4 Die Pin-Belegung d	es Netzteils	94
Tab. 7-5 Die Pin-Belegung d	es Sub-D-Steckers/Buchse	95

III. Abkürzungsverzeichnis

DESY	Deutsches Elektronen-Synchrotron
HERA	Hadron-Elektron-Ring-Anlage
PETRA	Positron-Elektron-Tandem-Ring-Anlage
MDI	Maschine, Diagnose und Instrumentierung
e*/-	e⁺ für Positron / e⁻ für Elektron
CCD	Charge-Coupled-Device
LHC	Large-Hadron-Collider
CERN	Conseil-Europeen-Recherche-Nucleaire
BKR	Beschleuniger Kontrollraum
PC	Personal Computer
LWL	Lichtwellenleiter
CAN	Controller Area Network
SPS	Speicherprogrammierbare Steuerung
OA	Optische Achse
PM	Photomultiplier
AND	UND-Verknüpfung
DIN	Deutsches Institut für Normung
VDE	Verband der Elektrotechnik
TLC	Twin-Line-Controller
CPU	Central-Processor-Unit
LED	Light Emitting Diode
XFEL	Freier-Elektronen-Laser

1. Einführung

Das Deutsche Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft ist eine der weltweit führenden Zentren für die Forschung an Teilchenbeschleunigern. DESY ist ein mit öffentlichen Mitteln finanziertes nationales Forschungszentrum mit zwei Standorten, in Hamburg und in Zeuthen (Brandenburg). DESY ist Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren.¹

DESY betreibt naturwissenschaftliche Grundlagenforschung mit folgenden Schwerpunkten:

- a) Untersuchung fundamentaler Eigenschaften der Materie in der Teilchenphysik mit dem HERA-Beschleuniger,
- b) Nutzung der Synchrotronstrahlung in der Oberflächenphysik, Materialwissenschaften, Chemie, Molekularbiologie, Biophysik und Medizin im Hamburger Synchrotronstrahlungslabor sowie
- c) Entwicklung, Bau und Betrieb der entsprechenden Beschleuniger-Anlagen.²

1.1 Der Teilchenbeschleuniger HERA

Die <u>Hadron-Elektron-Ring-Anlage</u> HERA ist der größte Teilchenbeschleuniger bei DESY in Hamburg. Die Anlage ist seit 1992 im Forschungsbetrieb. HERA ist der erste und einzige Speicherring, bei dem die beiden unterschiedlichen Arten von Materieteilchen miteinander kollidieren: Protonen und Elektronen (bzw. deren Antiteilchen, die Positronen). Er ist ein "Super-Elektronenmikroskop" zur Erforschung der innersten Strukturen der Materie und der Naturkräfte.

HERA besteht aus zwei ringförmigen, jeweils 6,3 Kilometer langen Beschleunigern in einem unterirdischen Tunnel. Der eine beschleunigt Elektronen auf eine Energie von 27,5 Giga-Elektronenvolt, der andere Protonen auf eine Energie von 920 Giga-Elektronenvolt (wenn ein Elektron die Spannung von 1 Volt durchfliegt, hat es die Energie von 1 Elektronenvolt, "Giga" steht für 1 Milliarde). Stundenlang kreisen Elektronen und Protonen in entgegengesetzter Richtung im Ultrahochvakuum der beiden Ringe.³

¹ http://www.desy.de/html/ueberdesy/ueber1.html

² http://www.desy.de/html/forschung/forschung.html

³ Vgl.: http://www.desy.de/html/ueberdesy/desy_im_ueberblick.html

Sie sind dabei fast so schnell wie das Licht, durchfliegen also etwa 47000-mal in der Sekunde ihren Rundkurs.⁴

In der Abbildung 1-1 sind die DESY-Beschleuniger schematisch dargestellt.

Abb. 1-1 Die DESY-Beschleuniger

1.2 Die Gruppe MDI

Die Gruppe MDI (Maschine, Diagnose und Instrumentierung) ist eine Abteilung des DESY-Beschleunigerbereiches. Sie setzt sich zusammen aus ca. 30 Physikern, Ingenieuren, Technikern, Elektronikern und Mechanikern und zeitweilig Praktikanten, Diplomanten und Gästen.

Die Aufgaben der Gruppe sind die Diagnostik der Elektronen-, Positronen- und Protonen-Stahlen. Hierzu werden spezielle Messgeräte entwickelt und später in den einzelnen Beschleunigern betrieben und gewartet.

⁴ Vgl.: http://www.desy.de/html/ueberdesy/desy_im_ueberblick.html

1.3 Aufgabenstellung

Zur Kontrolle der transversalen Strahldimensionen von Positronen und Elektronen werden Diagnosegeräte eingesetzt, die die vom Teilchenstrahl emittierte Synchrotronstrahlung im optischen Spektralbereich messen. Beim Transfer des Positronen- bzw. Elektronenstrahls aus dem Vorbeschleuniger PETRA in HERA kann es durch Fehlanpassungen der Magnetstruktur zu Strahlverlusten kommen. Damit verbunden ist eine Veränderung des Strahlprofils von Umlauf zu Umlauf des Teilchenstrahls, die über die Diagnose des Synchrotron-Lichtreflexes gemessen werden kann.

Es soll daher eine Meßstation konstruiert und in Betrieb genommen werden, mit der die Strahlprofil-Schwingung im Beschleuniger HERAe^{+/-} gemessen werden kann. Anhand dieser Messung läßt sich die Fehlanpassung der Magnetstruktur optimieren, indem die Strahlprofil-Schwingungen minimiert werden. Durch die damit verbundene Reduzierung der Teilchenstrahlverluste kann die Füllzeit von HERAe^{+/-} um bis zu einem Faktor 2 verkürzt werden (bisher 30min). Die verkürzte Füllzeit führt wiederum zu mehr effektiver Meßzeit und zu einer Reduzierung der Untergrundstrahlung für Experimente.

Dazu soll unter Anleitung ein vorhandener Meßplatz (Abbildung 1-4) erweitert und umgebaut werden, der bislang zur Messung und Kontrolle des transversalen Strahlprofils im Standardbetrieb dient.

Der neu zu erstellende Messaufbau soll langfristig in das Kontrollsystem von HERA eingebunden und zur Untersuchung weitreichender beschleunigerphysikalischer Fragestellungen eingesetzt werden.

Der hierbei zukünftig eingesetzte Synchrotronlicht-Monitor zur Injektionsoptimierung (Abbildung 1-5) zeichnet sich im wesentlichen dadurch aus, dass im Gegensatz zum bislang vorhandenen Emittanz-Monitor (Abbildung 1-4) das Strahlprofil bei jedem Umlauf (turn by turn ~50kHz) im Beschleuniger HERAe^{+/-} gemessen werden kann.

Zur Erfüllung der Aufgabe wurde zuerst an eine schnellere CCD-Flächenkamera gedacht. Da aber das Kamerasystem zu teuer und die Gefahr durch Strahlschäden zu hoch war, soll nun eine Zeilenkamera verwendet werden.⁵

⁵ Vgl.: Kube G., Aufbau und Test eines Synchrotronlicht-Monitors zur Injektionsoptimierung für HERAe, Juli 2004, S. 1f.

Einführung

Aufgrund der geringen Intensität pro Umlauf war für den Einsatz der CCD-Flächenkamera ursprünglich der Einsatz eines Restlichtverstärkers vorgesehen.

Bei Verwendung einer Zeilenkamera läßt sich aber die Intensität in der einen Strahldimension genau auf den Kamerachip fokussieren, während das Strahlprofil in der anderen Ebene so an die Chipgröße der Kamera angepaßt werden kann, dass eine optimale Ortsauflösung erzielt wird. Hierzu muss eine spezielle Abbildungsoptik mit Zylinderlinse eingesetzt werden.⁶

Zum leichteren Verständnis für den Einsatz einer Zylinderlinse ist in der Abbildung 1-2 das vergrößerte Strahlprofil ohne und in der Abbildung 1-3 mit einer Zylinderlinse schematisch dargestellt.

Abb. 1-2 Das Strahlprofil ohne Zylinderlinse

Abb. 1-3 Das Strahlprofil mit Zylinderlinse

Die im Rahmen der Diplomarbeit durchzuführenden Arbeiten beinhalten daher folgende Punkte:

- Test und Inbetriebnahme des Kamerasystems, bestehend aus einer Zeilenkamera (CameraLink-Standard) mit 50kHz Ausleserate, Framegrabber sowie Umsetzer auf LWL.
- Konzeption und Inbetriebnahme fernsteuerbarer Justage- und Verfahreinheiten (Translations- und Rotationstische), Aufbau des Trigger-Systems zur Synchronisation der Kameraauslese mit dem umlaufenden Strahl.
- Aufbau und Konzeption des optischen Systems zur Abbildung des Strahlprofils auf eine Zeilenkamera.

⁶ Vgl.: Kube G., Aufbau und Test eines Synchrotronlicht-Monitors zur Injektionsoptimierung f
ür HERAe, Juli 2004, S. 1f.

Einführung

- Auslegung und Aufbau einer passiven Abschirmung zum Schutz des Kamerasystems sowie im Fall von Strahlverlusten gegen Neutronenstrahlung und γ-Strahlung.
- Anfertigung der Konstruktionszeichnungen, Fertigungszeichnungen und Fertigungsbegleitung der Einzelteile und Qualitätssicherung sowie Durchführung der Endmontage im Beschleuniger.

In der Abbildung 1-4 ist eine Prinzipskizze des Emittanz-Monitors dargestellt.

Abb. 1-4 Die Prinzipskizze des Emittanz-Monitor

In der Abbildung 1-5 ist eine Prinzipskizze des Synchrotronlicht-Monitors zur Injektionsoptimierung dargestellt.

Abb. 1-5 Die Prinzipskizze des Synchrotronlicht-Monitors

2. Allgemeine Grundlagen und Systematiken

Aufgrund der Aufgabenstellung wird in diesem Kapitel zunächst die Entstehung der interessierenden Strahlungsarten im Beschleuniger HERA näher betrachtet. Weiterhin werden an Hand von Beispielen Schäden an Beschleunigermaterialien, Messaufbauten usw., die durch Strahlung entstehen können, dargestellt. Darauf aufbauend wird deren Vermeidung bzw. Verminderung von Strahlenschäden beschrieben.

2.1 Strahlung im Teilchenbeschleuniger HERA

Die Strahlungen im Teilchenbeschleuniger HERA läßt sich vom Standpunkt der Strahldiagnose in Nutzstrahlung und Untergrundstrahlung klassifizieren. Eine weitergehende Erörterung der Klassifikationskriterien ist für den Fortgang der Arbeit nicht zielführend und wird daher nicht weiter vorgenommen, so dass nur eine grundsätzliche Unterscheidung vorgenommen wird.

Zu der Nutzstrahlung gehört die Synchrotronstrahlung im sichtbaren Spektralbereich (370 bis 780nm). Sie wird für die Diagnose der interessierenden Teilchensorte eingesetzt.

Im Gegensatz dazu bildet die hochenergetische Synchrotronstrahlung, genauso wie die durch unkontrollierte Strahlverluste entstehende Neutonenstrahlung und γ -Strahlung, einen störenden Untergrund, der minimiert werden muss.

2.1.1 Entstehung der Synchrotronstrahlung

Auf Grund der klassischen Elektrodynamik strahlt jede beschleunigte Ladung Energie in Form von elektromagnetischen Wellen ab.⁷

⁷ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 35

Die im nichtrelativistischen Grenzfall (Abbildung 2-1) bereits von Larmor Ende des 19. Jahrhunderts berechnete emittierte Leistung ist für ultrarelativistische Teilchenenergien (v \approx c) besonders groß, wenn die Beschleunigung senkrecht zur Bewegungsrichtung erfolgt (Abbildung 2-2), d.h. das das Teilchen sich auf einer Kreisbahn bewegt, wie dies in modernen Kreisbeschleunigern der Fall ist.

Abb. 2-1 Nichtrelativistisch: v < c oder $\beta = v/c < 1$ Abb. 2-2 Ultrarelativistisch: $v \approx c$ oder $\beta \approx 1$

In diesem Fall ist die abgestrahlte Leistung:

$$P_{s} = \frac{e^{2}c}{6\pi\varepsilon_{0}} \frac{1}{(m_{0}c^{2})^{4}} \frac{E^{4}}{R^{2}}$$
(1)

mit

- Ps = gesamte Leistung der Synchrotronstrahlung
- e = Elementarladung 1,60203*10⁻¹⁹C
- c = Vakuumlichtgeschwindigkeit 2,99793*10⁸m/s
- m₀ = Ruhemasse eines Teilchens
- ϵ_0 = Dielektrizitätskonstante 8,85419*10⁻¹²Vs/Am
- E = Energie
- R = Krümmungsradius des Teilchenorbits.⁸

⁸ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 38f

Bei gegebener Energie verläuft für Teilchen mit der Elementarladung e die abgestrahlte Leistung P_s umgekehrt proportional zur 4. Potenz der Ruhemasse m₀. Ein Vergleich der Strahlung eines Elektrons (m₀c² = 0,511MeV) mit der eines Protons gleicher Energie (m_pc² = 938,19MeV) ergibt das Verhältnis:

$$\frac{S_{s,e}}{S_{s,p}} = \left(\frac{m_p c^2}{m_e c^2}\right)^4 = 1,13 \times 10^{13}$$
(2)

Es ist offensichtlich, dass diese Strahlung praktisch nur bei Elektronen eine Rolle spielt. Bei Protonen dagegen kann sie erst bei Energien von etlichen 100GeV beobachtet werden (zukünftig geplante p-Beschleuniger wie der Large-Hadron-<u>C</u>ollider LHC am CERN mit E = 7TeV).

Bei Kreisbeschleunigern ist es wichtig, den Energieverlust ΔE zu kennen, den das Teilchen bei einem vollen Umlauf erleidet.

Die abgestrahlte Energie pro Umlauf berechnet sich nach:

$$\Delta E = \frac{e^2}{3\varepsilon_0 (m_0 c^2)^4} \frac{E^4}{R}$$
(3)

Nimmt man die Werte für Elektronen und wählt handliche Dimensionen, so ergibt sich die leicht zu merkende Beziehung:

$$\Delta E[keV] = 88.5 \frac{E^4[GeV^4]}{R[m]}$$
(4)

Man sieht, dass die Strahlung mit der 4. Potenz der Strahlenergie ansteigt. Bei sehr niedrigen praktisch nichtrelativistischen Teilchenenergien spielt sie daher keine Rolle. Erst wenn die Elektronen Energien von mindestens einigen 10MeV erreicht haben, wird sie merkbar. Daher konnte diese Strahlung auch erst experimentell untersucht werden, als Kreisbeschleuniger mit hinreichend hohen Elektronenenergien entwickelt worden waren.⁹

⁹ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 38f

Da die Strahlung erstmals an einem Synchrotron-Beschleuniger beobachtet wurde, bei dem das Magnetfeld der Umlenkmagnete synchron mit der Teilchenenergie verfahren wird, erhielt sie den Namen Synchrotronstrahlung.¹⁰

Die Synchrotronstrahlung wird tangential zum Teilchenorbit in einen schmalen Öffnungskegel emittiert, der durch den Winkel

$$\Theta = \frac{1}{\gamma}$$

(5)

mit γ dem Lorentzfaktor charakterisiert wird.

An Hand einer Beispielrechnung soll die scharfe Kollimierung der Strahlung gezeigt werden.

Bei Injektion in HERAe^{+/-} beträgt die Energie

E = 12000MeV und

 $m_0c^2 = 0,511MeV.$

Der Lorentzfaktor berechnet sich nach der Formel:

$$y = \frac{E}{m_0 c^2}$$
(6)

Das heißt mit $\gamma = 23,5^*10^3$ wird die Synchrotronstrahlung in einem Konus mit dem halben Öffnungswinkel von $\Theta = 0,43$ mrad = 0,025° emittiert. Diese scharfe Bündelung der Strahlung ermöglicht es, aus der Breite des emittierten Lichtreflexes Rückschlüsse auf die transversalen Strahlprofile zu ziehen.¹¹

Das Spektrum der Synchrotronstrahlung reicht von Mikrowellenbereich bis weit in das Gebiet der Röntgenstrahlung (Abbildung 2-3).

¹⁰ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 39

¹¹ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 42

Abb. 2-3 Das Spektrum der Synchrotronstrahlung

Eine komplette Berechnung dieses Spektrums geht über den Rahmen dieser Diplomarbeit hinaus, es sei daher auf die Darstellung von Jackson¹² und Hoffmann¹³ verwiesen. Als Maß für das emittierte Spektrum dient aber die charakteristische Frequenz ω_c , deren Abschätzung nachfolgend skizziert wird.

Das Elektron erzeugt bei jedem Umlauf während des Vorbeifluges beim Beobachter einen elektromagnetischen Puls der Dauer Δt , der periodisch mit der Umlauf-Frequenz f_u ist. Daher besteht das Spektrum aus Harmonischen der Umlauf-Frequenz. Wesentlich für die Breite des Spektrums ist dabei vor allem die Pulsdauer Δt . Diese kann an Hand der Abbildung 2-4 leicht angegeben werden.¹⁴

¹² Vgl.: Jackson J.D., Classical Electrodynamics, Wiley, New York (1975)

¹³ Vgl.: Hofmann A., Theory of Synchrotron Radiation, SSRL ACD-Note (1986)

¹⁴ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 42ff

Abb. 2-4 Abschätzung der Länge des elektromagnetischen Pulses, den ein relativistisches Elektron während des Vorbeifluges beim Beobachter erzeugt

Das Elektron durchläuft ein in diesem Bereich homogen angenommenes Magnetfeld und beschreibt dabei eine gekrümmte Bahn mit dem Biegeradius R. Wegen ihrer scharfen Vorwärtsbündelung sieht der Beobachter die Strahlung erst, wenn ihn der äußere Rand des Strahlungskonus erfaßt. Dieser hat zur Flugrichtung des Elektrons den Winkel $\Theta = -1/\gamma$. Das Elektron befindet sich dann gerade am Punkt A seiner Bahn. Beim Weiterflug überstreicht die emittierte Strahlung den Beobachter, bis der gegenüberliegende Rand des Konus beim Winkel $\Theta = +1/\gamma$ erreicht ist (Punkt B der Elektronenbahn). Danach sieht der Beobachter bis zum nächsten Umlauf keine Strahlung mehr. Das erste beim Beobachter ankommende Photon wird am Punkt A emittiert und das letzte am Punkt B. Die Zeitdifferenz dieser beiden Photonen liefert die Länge des elektromagnetischen Pulses.¹⁵

Dieser kurze elektromagnetische Puls erzeugt ein breites Spektrum mit der typischen Frequenz:

$$\omega_{typ} = \frac{2\pi}{\Delta t} = \frac{3\pi\gamma^3}{2R}$$
(7)

Im allgemeinen wird statt der typischen Frequenz zur Beschreibung des Spektralbereichs der Synchrotronstrahlung die kritische Frequenz ω_c angegeben.¹⁶

¹⁵ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 43f 16 Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 44ff

Sie ist definiert durch:

$$\omega_c = \frac{3 c \gamma^3}{2 R}$$
(8)

wobei

 ω_c = kritische Frequenz

 γ = Lorentzfaktor, γ = E / m₀c² ist.

Es ist leicht einzusehen, dass die Synchrotronstrahlung wegen ihrer sehr scharfen Vorwärtsbündelung (Abbildung 2-2), ihrer extremen hohen Intensität und wegen des sehr breiten Spektrums (Abbildung 2-3) ein äußerst leistungsfähiges Hilfsmittel für die Grundlagenforschung wie auch für die optische Strahldiagnose ist.¹⁷

2.1.2 Entstehung der Untergrundstrahlung

Neutronenstrahlung entsteht vorwiegend durch Sekundärreaktionen bei unkontrollierten Strahlverlusten, beispielsweise bedingt durch technische Ausfälle, Strahlinstabilität, usw.. Die Folge daraus ist, dass der Teilchenstrahl die Innenwand des Strahlrohrs berührt, wodurch Neutronen- und γ -Strahlung entsteht. Die Neutronenstrahlung ist vorwiegend bei Protonen-Strahlverlusten zu erwarten. Zusätzlich tritt beim dauerhaften Betrieb von HERAe^{+/-} hochenergetische Synchrotronstrahlung als Untergrundquelle auf (Abbildung 2-3).

2.2 Schäden durch Untergrundstrahlung

In der folgenden Tabelle 2-1 sind beispielhafte Werkstoffschäden an Komponenten von Messaufbauten bedingt durch Untergrundstrahlung aufgelistet. Hierbei wurden nur Schäden berücksichtigt, die für den weiteren konstruktiven Fortgang der Arbeit wichtig sind.

¹⁷ Vgl.: Wille K., Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, S. 44ff

Allaemeine	Grundlagen	und	Systematiken
, mgonnonno	eranaiagen		eyeternatintern

	Schäden durch Untergrundstrahlung						
Lfd. Nr.	Eingesetzte Komponenten	Folge	Vor dem Gebrauchseinsatz	Nach dem Gebrauchseinsatz			
1	Spiegel, Linsen, Glühlampe	Je nach eingesetzter Glassorte (z.B. Flintglas, Quarzglas, Hartglas usw.) entsteht eine Verfärbung des Glases bzw. der Glas- oberfläche. Die Verfärbung reicht von gelb bis dunkel braun.	Glühlampe	Glühlampe			
2	Quadrupol- Magnet	Durch Fehleinstellung der Magnetstruktur passiert es, dass der Strahl seine Soll- bahn verläßt und wie in diesem Fall große Schäden an den Magneten verursacht.	Quadrupol	Quadrupol			
3	Anschluß- kabel	Für die Signalübertragung sind elektrische Kabel im Einsatz, deren Isolierung nicht Strahlungsbeständig ist. Die Folge: Die Isolierung der Kabel wird nach einiger Zeit porös.	Kabel	Kabel			

Tab. 2-1 Schäden die durch Untergrundstrahlung entstanden sind

2.3 Schutzmöglichkeiten vor Untergrundstrahlung

Ein Teil der Diagnose-Geräte für die Strahlbeobachtung werden im HERA-Beschleuniger in unmittelbarer Nähe der Strahlrohre aufgebaut. Daher muss berücksichtigt werden, dass an einigen eingesetzten Komponenten Strahlschäden durch Neutronen entstehen können. Zu den entstehenden Schäden tragen im wesentlichen Neutronen oberhalb von 1MeV bei. Im DESY-Bericht D3-32 wurden die Neutronenfluenzen in einem Jahr (Φ_a), die im HERA-Beschleuniger zu erwarten sind, abgeschätzt.

In einen Abstand von 1m Entfernung zum Strahlrohr ergeben sich Werte von $\Phi_a(E_n > 1 \text{MeV}) = 4*10^{11} \text{cm}^{-2}$ und die Energieverteilung der Neutronen hat ein ausgeprägtes Maximum bei 0,8MeV.¹⁸

Grundsätzlich ist eine Reduzierung der Strahlenbelastung von Materialien auf Null nicht möglich.

18 Vgl.: Hain W., Neutronenabschirmung in HERA, S. 1

Die beste Möglichkeit wäre, dass man strahlungsanfällige Materialien nicht unnötig einer solchen hohen Strahlung aussetzt. Da es aber nicht vermeidbar ist, muss eine geeignete Abschirmung ausgesucht werden, welche angepasst an die zu erwartenden Strahlungsarten am Einsatzort ist.

Abschirmung bedeutet, dass zwischen Strahlquelle und dem zu schützenden Körper ein geeignetes Absorptionsmaterial gebracht wird, welches die Strahlung abbremst.

Eine Absorption von Neutronen ist nur für solche mit relativ niedriger Energie möglich. Daher werden zur Absorption von Neutronenstrahlung mehrschichtig aufgebaute Absorbermaterialien verwendet.

Als erstes soll die Energie der Neutronen reduziert werden. Hierfür eignen sich besonders Materialien mit einem hohem Gehalt von Wasserstoffatomen. Stoffe mit hohem Wasserstoffgehalt sind beispielsweise Polymere, Wasser oder Paraffin.

Als zweites werden die Neutronen eingefangen. Das kann erlangt werden, indem man die zuvor genannten Stoffe mit bor- oder kabidhaltigen Stoffen zusätzlich anreichert. bor- und kabidhaltigen Stoffen fangen Neutronen ein. Bei der darauf folgenden Kernreaktion entsteht eine charakteristische γ -Strahlung der E = 450MeV, die sich, wie auch die störenden Komponenten der Synchrotronstrahlung, durch Material mit hohen Massenabsorptionskoeffizienten (Blei) abschwächen läßt. Eine solche Neutronen-Abschirmung ist in der folgenden Abbildung 2-5 dargestellt.¹⁹

Abb. 2-5 Die Neutronen-Abschirmung

3. Konstruktionsmethodik

Mit Hilfe der Konstruktionsmethodik soll die Herangehensweise zur Findung einer optimalen Lösung der Gesamtfunktion des Synchrotonlicht-Monitors zur Injektionsoptimierung gefunden und bewertet werden. Hierbei wird zunächst eine Anforderungsliste aufgestellt (Kapitel 3.1), die alle für die Lösungsfindung maßgeblichen Kriterien enthält. Anschließend kann durch den Abgleich der Aufgabenstellung und der Anforderungsliste die Gesamtfunktion definiert und in Teilfunktionen untergliedert werden (Kapitel 3.2).

3.1 Anforderungsliste

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Ste Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 1 von 7	
Lfd. Nr.	F / W	Anforderungen	Änderung	Verant- wortlich
		Einsatzbedingungen:		
1	F	Synchronisation / Trigger-System Zur genauen Messung, ist der Aufbau eines Trigger-Systems zur Synchronisation der Kameraauslese mit dem umlaufenden Strahl erforderlich.		
2	F	Strahlablenkung Damit das zukünftige Meßsystem das Profil vergrößern und messen kann, muss der Strahl von dem Emittanz- Monitor in den zukünftigen Synchrotronlicht-Monitor abgelenkt werden.		

Tab. 3-1 Anforderungsliste: Blatt 1 von 7

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 2 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
		Einsatzbedingungen:		
3	F	Strahlprofil Vergrößerung und Fokussierung Die Vergrößerung des Strahlprofils muss in der horizontalen Ebene um das 8fache und in der vertikalen um das 21fache vergrößert und anschließend auf eine Zylinderlinse fokussiert werden.		
4	F	Strahlprofilmessung Zur Messung des Strahlprofils muss der Querschnitt in der messtechnisch relevanten Horizontalen und dann um 90° gedreht in der vertikalen Ebene gemessen werden.		
5	F	Aufnahme der Abbildung Die Aufnahme der der Abbildung muss mittels einer Zeilenkamera der Marke ATMEL (Typ AviivA M2 CL) erfolgen.		
6	F	Positionierung Der gesamte Messaufbau muss durch eine ferngesteuerten Mechanik zum Strahl positionierbar sein.		
7	W4	Wiederholgenauigkeit Für Startpunkt und Endpunkt, sowie für das Anfahren der einzelnen Messpunkte soll auch nach mehrmaligen Messzyklen eine Positionsgenauigkeit gegeben sein. Toleranz: 1mm		
8	W4	Fremdlicht Das Meßsystem sowie der Übergang vom Emitanz-Monitor zu der zukünftigen Meßstation sollen vor äußeres Fremdlicht geschützt werden.		

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 3 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
9	W3	Einsatzbedingungen: Strahlungsbeständigkeit Die technischen Elemente, Werkstoffe und insbesondere die Zeilenkamera des Synchrotronlicht-Monitors müssen Strahlungsbeständigkeit aufweisen, oder durch zum Beispiel Abschirmung geschützt werden.		
10	W3	Geringe Erschütterungsempfindlichkeit Um eine möglichst genaue Messung zu erreichen, sind die Schwingungen der Monitor-Box und dessen Halterung oberhalb einer Frequenz von 1kHz zu vermeiden.		
11	W3	Korrosionsbeständig Der Einsatz von möglichst korrosionsbeständigen Materialien wäre vorteilhaft. Kontrolle der Strahlposition und Strahlintensität:		
12	F	Photomultiplier Zur genauen Angabe der Strahlposition in der Monitor-Box und der zu ermittelnden Strahlintensität muss ein Photomultiplier der Marke Hamamatsu (Typ R2496) eingesetzt werden.		

Tab. 3-3 Anforderungsliste: Blatt 3 von 7

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 4 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
13	F	<u>Signal:</u> AN / AUS – Betrieb		
		Der Aufbau muss nur dann mit Strom versorgt und ansteuerbar sein, wenn der Strahl von dem Emittanz-Monitor in den Synchrotronlicht-Monitor abgelenkt wird. Beim Aus-Betrieb ist darauf zu achten, dass die ferngesteuerten Verfahreinheiten in ihrer Position exakt gehalten bleiben.		
14	F	Ansteuerung über PC Der An/Aus-Betrieb sowie alle ferngesteuerten Verfahreinheiten müssen vom BKR aus über einem PC ansteuerbar sein.		
15	W3	Bildübertragung Das aufgenommene Bild soll vom digitalen Ausgangssignal auf LWL und dann wieder in ein digitales Signal umgewandelt werden.		
		<u>Kinematik:</u>		
16	F	Bewegungsrichtung (ferngesteuert) Für die genaue Messung muss das Meßsystem oder der Strahl in der X-,Y- und Z-Achse ferngesteuert positionierbar sein.		
17	W4	Stabilität der Trägerkonstruktion Zur genauen Messung muss die Grundplatte, worauf das gesamte optische Meßsystem montiert ist, vor statischer Durchbiegung über 0,1mm geschützt werden.		

Tab. 3-4 Anforderungsliste: Blatt 4 von 7

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 5 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
18	W3	Kinematik: Geschwindigkeit Eine absolute Geschwindigkeit für die Verfahreinheiten ist nicht vorgegeben, nur ein sicherer und kontinuierlicher Lauf sollte gewährleistet sein.		
19	W3	Bewegungsrichtung (manuell) Das optische Abbildungssystem sowie der Photomultplier sollen manuell justierbar sein. Geometrie:		
20	W4	Raumbedarf für Anschlußkabel In der Box sollte Platz für die Anschlusskabel zur Strom- und Signalübertragung gewährleistet sein.		
21	W3	Raumbedarf Die Abmessungen für die Monitor-Box und für das Meßsystem sollten gering und kompakt gehalten werden.		
22	W3	Anordnung Die zukünftige Monitor-Box sollte das kleinstmögliche Bauvolumen besitzen, um so über der Emittanz-Monitor-Box platziert werden zu können.		
23	W3	Größere Umbaumaßnahmen im Beschleuigerraum sind zu vermeiden Um den zeitlichen Aufwand gering zu halten, sollten größere Umbaumaßnahmen im Beschleunigerraum vermieden werden.		

Tab. 3-5 Anforderungsliste: Blatt 5 von 7

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 6 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
		<u>Geometrie:</u>		
24	W1	Baukastenprinzip Eine Konstruktion auf Basis des Baukastensystems wäre eine wirtschaftliche Alternative.		
25	W1	Standardisierte Komponenten Um den Fertigungsaufwand gering zu halten, sollten möglichst viele genormte Komponenten verwendet werden.		
		Montage:		
26	F	Synchrotronlicht-Monitor Vor dem Einbau des Meßsystems in die Monitor-Box, muss die Box im Beschleuniger an ihrem Einsatzort aufgestellt und befestigt werden.		
		Instandhaltung:		
27	W4	Geringer Wartungsaufwand Die für die Wartung notwendigen Arbeiten an dem System sollten zeitlich minimiert werden, da die Ausfallzeit des Beschleunigers kostenintensiv ist. Die Ersatzteile an Normalien, zum Beispiel Linsen sollen aus kostengründen gering gehalten werden.		
28	W3	Zugänglichkeit Das System sollte leicht zugänglich sein, zum Beispiel durch seitliche Öffnung der Monitor-Box.		

Tab. 3-6 Anforderungsliste: Blatt 6 von 7

F = Forderung W4 = sehr wichtig W3 = wichtig W2 = interessant W1 = wenn möglich		Anforderungsliste	Erstellt am: 01.09.2004 von: Chr. Wiebers Blatt 7 von 7	
Lfd. Nr.	F/W	Anforderungen	Änderung	Verant- wortlich
29	W2	Instandhaltung: Standardwerkzeuge Für die Wartung notwendigen Werkzeuge sollten möglichst Standartwerkzeugen verwendet werden.		
30	F	Sicherheit: Not-System für die Positionierung beim Stromausfall Bei einer Unterbrechung der Stromzufuhr muss gewährleistet sein, dass die Positionsmechanik und das Meßsystem in seiner momentanen Position verweilt und so geschützt ist.		
31	F	Erfüllung der Sicherheitsvorschriften von DESY Die vorhandenen Sicherheitsvorschriften müssen erfüllt werden.		
32	W4	Antriebsstopp Bei erreichen eines Messpunktes ist der Dauerbetrieb der Verfahreinheit zu stoppen.		

Tab. 3-7 Anforderungsliste: Blatt 7 von 7

3.2 Untergliederung in Teilfunktionen

Durch den Abgleich der Aufgabenstellung und der Anforderunglsiste ist die Gesamtfunktion des Synchrotronlicht-Monitors zur Injektionsoptimierung für HERAe definiert. Zur Findung einer optimalen Gesamtlösung wird die Gesamtfunktion (Abbildung 3-1) in Teilfunktionen (Tf_1 bis 9) unterteilt.

Abb. 3-1 Untergliederung der Gesamtfunktion in Teilfunktionen

3.3 Lösungsfindung

In der Tabelle 3-8 wird jeder Teilfunktion einer oder mehreren Teillösungen für die Erfüllung zugeordnet.

Teilfunktionen	Teillösungen						
[Tf]	1	2	3	4	5	6	
Tf_1	Goniometer	Rotations- tisch	Klappe	Hebetisch	Lineartisch	Pneu- matischer Zylinder	
Tf_2	Twin-Line Positionier- steuerung	Universelle Motoran- steuerung	Schrittmotor- steuerung	Pneuma- tische Speicher- steuerung			
Tf_3	Schrittmotor	AC- Synchron Servomotor	Gleichstrom- motor	Pneu- matischer Zylinder			
Tf_4	Halte- bremse	Endschalter	Nährungs- schalter				
Tf_5	Achromate	Mikroskope	Okulare				
Tf_6	Strahl- rotator mit Spiegel	Glasfaser	Prisma				
Tf_7	Zeilen- Kamera	Flächen- Kamera	Röhren- Kamera				
Tf_8	Beton	Blei	Paraffin	Tetrabor- oxid	Tetrabor- karbid	Eisen	
Tf_9	Pneu- matische Isolatoren	Elastomer Dämpfer	Schwing- ungsiso- lierende Struktur	Starre Aufhängung			

Tab. 3-8 Lösungsfindungen für die Teilfunktionen

3.4 Bewertung

Um eine Bewertung durchführen zu können, müssen anhand der geforderten Bedingungen Bewertungskriterien festgelegt werden.

Die Aufstellung der Bewertungskriterien ergeben sich hauptsächlich aus der Anforderungsliste:

- Zuverlässigkeit
- Abmaße
- Gewicht
- Materialien
- Lebensdauer
- Wartungsfreundlichkeit
- Montage-/Demontagefreundlichkeit
- Materialbearbeitung
- Energieart
- Positionsgenauigkeit
- Messgenauigkeit
- Variabilität (Baukastenprinzip)
- Geschwindigkeit
- Sicherheit im Betrieb
- Strahlungsbeständigkeit
3.4.1 Gewichtung der Bewertungskriterien

Die aufgestellten Bewertungskriterien werden in der folgenden Tabelle 3-9 gegenübergestellt und gewichtet.

1 = wichtig 0 = weniger wichtig - = ohne Wertung Ausgang	Zuverlässigkeit	Abmaße	Gewicht	Materialien	-ebensdauer	Wartungsfreundlichkeit	Montage-/Demontagefreundlichkeit	Materialbearbeitung	Energieart	⊃ositionsgenauigkeit	Messgenauigkeit	/ariabilität (Baukastenprinzip)	Geschwindigkeit	Sicherheit im Betrieb	Strahlungsbeständigkeit
Zuverlässigkeit	-	0	1	1	1	0	1	1	1	1	1	0	0	1	0
Abmaße	1	-	1	1	0	0	1	1	0	1	1	1	0	0	1
Gewicht	1	1	-	1	0	0	0	1	0	1	0	1	0	0	1
Materialien	0	1	1	-	1	1	1	1	0	0	0	1	0	1	1
Lebensdauer	1	0	0	0	-	1	0	1	1	0	0	1	0	1	1
Wartungsfreundlichkeit	0	0	1	1	1	-	1	0	0	1	0	1	0	0	0
Montage/Demontagefreundlichkeit	0	1	0	1	0	1	-	1	0	1	1	1	0	0	1
Materialbearbeitung	1	1	1	1	0	0	1	-	1	1	0	0	0	1	0
Energieart	0	1	0	1	0	0	0	1	-	0	1	1	0	1	1
Positionsgenauigkeit	1	1	0	1	1	0	1	1	1	-	1	1	0	1	0
Messgenauigkeit	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1
Variabilität (Baukastenprinzip)	0	0	0	1	1	1	1	0	1	1	1	-	0	0	1
Geschwindigkeit	0	0	0	0	0	0	0	1	0	1	1	0	-	1	0
Sicherheit im Betrieb	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1
Strahlungsbeständigkeit	1	1	0	1	1	0	0	0	1	0	0	1	0	1	I
Anzahl der Einsen	8	8	7	12	8	6	9	11	7	10	8	11	2	9	8
Summe aller Einsen [=100%]								124							
Gewichtung der Kriterien in %	6,5	6,5	5,6	9,7	6,5	4,8	7,3	8,9	5,6	8,1	6,5	8,9	1,6	7,3	6,5
Gewichtungsfaktor [Gf] Gewichtung in % / 100	0,065	0,065	0,056	0,097	0,065	0,048	0,073	0,089	0,056	0,081	0,065	0,089	0,016	0,073	0,065
Rang	9	11	13	1	10	14	6	2	12	4	7	3	15	5	8

Tab. 3-9 Gewichtung der Bewertungskriterien

3.4.2 Bewertung der Teilfunktionen

Die Werteskala für die Durchführung einer Bewertung ist in der Tabelle 3-10 aufgeführt:

Einfacher Bewertungssch	üssel (= Grad der Annährung)
Punkte [Pi]	Bedeutung
0	ungeeignet
1	gerade noch tragbar
2	ausreichend
3	gut
4	sehr gut (ideal) [P _{max}]

Tab. 3-10 Die Werteskala

Mit der folgenden Gl. (9) und der Skala kann dann eine Wertigkeit der Teillösungen erfolgen.

$$W = \Sigma \frac{(Gf * Pi)}{Pmax}$$
(9)

Die folgende Tabelle 3-11 zeigt grobe Richtwerte für die Wertigkeit der einzelnen Teilfunktionen.

Wertigkeit [W]	Lösungsbewertung
>0,40	gut
>0,30	ausreichend
<0,25	ungeeignet

Tab. 3-11 Bewertungs-Richtwerte

		1											
Energie						elek	trisch					pr ma	neu- atisch
Bewegungsart				rotat	orisch				t	ransla	atorisch		
Kommunikationsschnittstelle													
Lösungsvorschlag		1 2					3		4		5	6	
Konstruktiv			Goniometer		Rotationstisch		Klappe	Hebetisch		Lineartisch			Pneumatischer Zylinder
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	3	0,195	3	0,195	3	0,195	3	0,195	4	0,260	3	0,195
Abbmaße	0,065	3	0,195	2	0,130	3	0,195	0	0,000	2	0,130	3	0,195
Gewicht	0,056	2	0,112	3	0,168	3	0,168	3	0,168	1	0,056	3	0,168
Materialien	0,097	3	0,291	3	0,291	3	0,291	4	0,388	3	0,291	2	0,194
Lebensdauer													
Wartungsfreundlichkeit	0,048	3	0,144	3	0,144	3	0,144	2	0,096	2	0,096	3	0,144
Montage-/Demontagefreundlichkeit	0,073	2	0,146	1	0,073	3	0,219	2	0,146	2	0,146	1	0,073
Materialbearbeitung													
Energieart	0,056	4	0,224	4	0,224	4	0,224	4	0,224	4	0,224	0	0,000
Positionsgenauigkeit	0,081	3	0,243	3	0,243	3	0,243	3	0,243	3	0,243	2	0,162
Messgenauigkeit													
Variabilität (Baukastenprinzip)	0,089	1	0,089	2	0,178	1	0,089	1	0,089	2	0,178	0	0,000
Geschwindigkeit													
Sicherheit im Betrieb	0,073	4	0,292	4	0,292	4	0,292	4	0,292	4	0,292	4	0,292
Strahlungsbeständigkeit	0,065	3	0,195	3	0,195	3	0,195	3	0,195	3	0,195	3	0,195
Summe	0,768		2,126		2,133		2,255		2,036		2,111		1,618
Wertigkeit [W]			0,41		0,41		0,43		0,39		0,41		0,31
Rang			3		4		1				2		5

Tab. 3-12 Bewertung für den Antrieb zur Positionierung

|--|

Energie				elek	trisch			pr ma	neu- tisch				
Bewegungsart													
Kommunikationsschnittstelle		CAN	N-Bus	RS-	232-C	3-Kanal Schritt- motorkarte		SPS					
Lösungsvorschlag			1		2		3	4					
Konstruktiv		Twin Line	Positioniersteuerung	l Iniverselle	Motoransteuerung	Schrittmotorsteuerung		Pneumatische Speicherschaltung					
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	3	0,195	3	0,195	3	0,195	3	0,195				
Abbmaße	0,065	4	0,260	2	0,130	1	0,065	3	0,195				
Gewicht													
Materialien													
Lebensdauer													
Wartungsfreundlichkeit	0,048	3	0,144	3	0,144	3	0,144	4	0,192				
Montage-/Demontagefreundlichkeit	0,073	4	0,292	3	0,219	2	0,146	3	0,219				
Materialbearbeitung													
Energieart	0,056	4	0,224	4	0,224	4	0,224	0	0,000				
Positionsgenauigkeit													
Messgenauigkeit													
Variabilität (Baukastenprinzip)	0,089	3	0,267	2	0,178	1	0,089	1	0,089				
Geschwindigkeit													
Sicherheit im Betrieb	0,073	3	0,219	2	0,146	2	0,146	2	0,146				
Strahlungsbeständigkeit													
Summe	0,469		1,601		1,236		1,009		1,036				
Wertigkeit [W]			0,19		0,14		0,12		0,12				
Rang			1		2		4		3				

Tab. 3-13 Bewertung für die Steuereinheit

Tf_3 Antriebsmotor

Energie				elek	trisch			pr ma	neu- tisch				
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3		4				
Konstruktiv			Schrittmotor	AC-Svnchron	Servomotor		Gleicnstrommotor Pneumatischer Zyllinder		Pneumatischer Zylinder				
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	4	0,260	2	0,130	2	0,130	3	0,195				
Abbmaße	0,065	3	0,195	2	0,130	2	0,130	3	0,195				
Gewicht													
Materialien													
Lebensdauer	0,065	4	0,260	0	0,000	0	0,000	4	0,260				
Wartungsfreundlichkeit	0,048	4	0,192	2	0,096	2	0,096	2	0,096				
Montage-/Demontagefreundlichkeit													
Materialbearbeitung													
Energieart	0,056	4	0,224	4	0,224	4	0,224	0	0,000				
Positionsgenauigkeit	0,081	3	0,243	4	0,324	4	0,324	3	0,243				
Messgenauigkeit													
Variabilität (Baukastenprinzip)													
Geschwindigkeit													
Sicherheit im Betrieb	0,073	4	0,292	1	0,073	1	0,073	3	0,219				
Strahlungsbeständigkeit	0,065	4	0,130	0	0,000	0	0,000	3	0,195				
Summe	0,518		1,796		0,977		0,977		1,403				
Wertigkeit [W]			0,23		0,13		0,13		0,18				
Rang			1		3		4		2				

Tab. 3-14 Bewertung für den Antriebsmotor

Tf_4 Antriebsstopp

Energie			elekt	risch		ind	uktiv						
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3						
Konstruktiv			Haltebremse		Endschalter	Nährungsschalter							
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	4	0,260	4	0,260	3	0,195						
Abbmaße	0,065	2	0,130	3	0,195	4	0,260						
Gewicht													
Materialien													
Lebensdauer													
Wartungsfreundlichkeit	0,048	2	0,096	4	0,192	3	0,144						
Montage-/Demontagefreundlichkeit													
Materialbearbeitung													
Energieart	0,056	4	0,224	4	0,224	4	0,224						
Positionsgenauigkeit													
Messgenauigkeit													
Variabilität (Baukastenprinzip)													
Geschwindigkeit													
Sicherheit im Betrieb	0,073	4	0,292	2	0,146	3	0,219						
Strahlungsbeständigkeit	0,065	3	0,195	3	0,195	2	0,130						
Summe	0,372		1,197		1,212		1,172						
Wertigkeit [W]			0,11		0,11		0,11						
Rang			2		1		3						

Tab. 3-15 Bewertung für den Antriebsstopp

Tf_5 Strahlvergrößerung

Energie													
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3						
Konstruktiv			Achromate		Mikroskope	Okulare							
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	4	0,260	4	0,260	4	0,260						
Abbmaße	0,065	4	0,260	3	0,196	3	0,196						
Gewicht													
Materialien	0,097	3	0,291	1	0,097	1	0,097						
Lebensdauer	0,065	3	0,196	2	0,130	2	0,130						
Wartungsfreundlichkeit	0,048	3	0,144	2	0,096	2	0,096						
Montage-/Demontagefreundlichkeit	0,073	3	0,219	3	0,219	3	0,219						
Materialbearbeitung													
Energieart													
Positionsgenauigkeit													
Messgenauigkeit	0,065	4	0,260	3	0,195	2	0,130						
Variabilität (Baukastenprinzip)	0,089	4	0,356	3	0,267	2	0,178						
Geschwindigkeit													
Sicherheit im Betrieb													
Strahlungsbeständigkeit	0,065	2	0,130	1	0,065	1	0,065						
Summe	0,632		2,116		1,525		1,371						
Wertigkeit [W]			0,33		0,24		0,22						
Rang			1		2		3						

Tab. 3-16 Bewertung für die Strahlvergrößerung

Tf_6 90° Strahlprofildre	ehung	3											
Energie													
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3						
Konstruktiv		Strahlrotator	Strahlrotator mit Spiegel		Glasfaser		Prisma						
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	4	0,260	4	0,260	3	0,195						
Abbmaße	0,065	1	0,065	3	0,195	3	0,195						
Gewicht	0,056	2	0,112	3	0,168	3	0,168						
Materialien	0,097	3	0,291	2	0,194	1	0,097						
Lebensdauer	0,065	3	0,195	1	0,065	1	0,065						
Wartungsfreundlichkeit	0,048	3	0,144	1	0,048	2	0,096						
Montage-/Demontagefreundlichkeit	0,073	2	0,146	1	0,073	2	0,146						
Materialbearbeitung													
Energieart													
Positionsgenauigkeit	0,081	3	0,243	2	0,162	2	0,162						
Messgenauigkeit													
Variabilität (Baukastenprinzip)	0,089	3	0,267	1	0,089	3	0,267						
Geschwindigkeit													
Sicherheit im Betrieb													
Strahlungsbeständigkeit	0,065	3	0,195	0	0,000	0	0,000						
Summe	0,704		1,918		1,254		1,391						
Wertigkeit [W]			0,34		0,22		0,24						
Rang			1		3		2						

Tab. 3-17 Bewertung für die 90° Strahldrehung

Tf_7 Aufnahme der Ab	bildu	ng											
Energie			dig	jital		an	alog						
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3						
Konstruktiv			Zeilenkamera		Flächenkamera	Köhrenkamera							
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	3	0,195	3	0,195	0	0,000						
Abbmaße	0,065	3	0,195	3	0,195	1	0,065						
Gewicht													
Materialien													
Lebensdauer	0,065	2	0,130	2	0,130	2	0,130						
Wartungsfreundlichkeit	0,048	3	0,144	3	0,144	0	0,000						
Montage-/Demontagefreundlichkeit													
Materialbearbeitung													
Energieart	0,056	4	0,224	4	0,224	4	0,224						
Positionsgenauigkeit													
Messgenauigkeit	0,065	3	0,195	3	0,195	1	0,195						
Variabilität (Baukastenprinzip)													
Geschwindigkeit													
Sicherheit im Betrieb	0,073	3	0,219	3	0,219	2	0,146						
Strahlungsbeständigkeit	0,065	2	0,130	2	0,130	3	0,130						
Summe	0,502		1,432		1,432		0,890						
Wertigkeit [W]			0,18		0,18		0,11						
Rang			1		2		3						

Tab. 3-18 Bewertung für die Aufnahme der Abbildung

Tf_8 Abschirmung von Strahlung

Energie			γ-Strahlung					Neutronenstrahlung					
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag		1		2		3		4		5		6	
Konstruktiv			Beton		Blei		Eisen	Tetraboroxid Tetraborkarbid		Tetraborkarbid	Paraffin		
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	3	0,195	3	0,195	3	0,195	3	0,195	3	0,195	3	0,195
Abbmaße													
Gewicht	0,056	2	0,112	1	0,056	2	0,112	1	0,056	1	0,056	3	0,168
Materialien													
Lebensdauer													
Wartungsfreundlichkeit													
Montage-/Demontagefreundlichkeit	0,073	0	0,000	3	0,219	3	0,219	2	0,146	1	0,073	0	0,000
Materialbearbeitung	0,089	0	0,000	4	0,356	4	0,356	3	0,267	0	0,000	0	0,000
Energieart													
Positionsgenauigkeit													
Messgenauigkeit													
Variabilität (Baukastenprinzip)													
Geschwindigkeit													
Sicherheit im Betrieb	0,073	3	0,219	4	0,292	1	0,073	3	0,219	3	0,219	3	0,291
Strahlungsbeständigkeit													
Summe	0,356		0,526		1,118		0,955		0,883		0,219		0,582
Wertigkeit [W]			0,05		0,10		0,08		0,08		0,02		0,05
Rang			5		1		2		3		6		4

Tab. 3-19 Bewertung für die Abschirmung von Strahlung

Tf_9 Vermeidung vor Erschütterung													
Energie													
Bewegungsart													
Kommunikationsschnittstelle													
Lösungsvorschlag			1		2		3		4				
Konstruktiv			Pneumatische Isolatoren		Elastomer-Dämpfer	Schwingingsisolierende	Struktur (Warbenstruktur)	Starre Aufhängung					
Gewichtung	Gf	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi	Pi	Gf*Pi
Zuverlässigkeit	0,065	4	0,260	2	0,130	3	0,195	3	0,195				
Abbmaße	0,065	1	0,065	3	0,195	2	0,130	2	0,130				
Gewicht	0,056	1	0,056	4	0,224	2	0,112	2	0,112				
Materialien													
Lebensdauer													
Wartungsfreundlichkeit													
Montage-/Demontagefreundlichkeit	0,073	0	0,000	3	0,219	2	0,146	2	0,146				
Materialbearbeitung													
Energieart													
Positionsgenauigkeit													
Messgenauigkeit													
Variabilität (Baukastenprinzip)													
Geschwindigkeit													
Sicherheit im Betrieb	0,073	1	0,073	1	0,073	3	0,219	3	0,219				
Strahlungsbeständigkeit	0,065	3	0,195	0	0,000	3	0,195	3	0,195				
Summe	0,397		0,649		0,841		0,997		0,997				
Wertigkeit [W]			0,06		0,08		0,10		0,10				
Rang			4		3		2		1				

Tab. 3-20 Bewertung für die Vermeidung vor Erschütterung

3.5 Ergebnis

Nachdem alle Teilfunktionen bzw. deren einzelnen Lösungsfindungen bewertet wurden sind, ist der nächste Schritt, zu entscheiden welche der besten drei theoretischen Lösungen (Tabelle 3-21 und 3-22) die technisch beste Lösung zur Erfüllung der Gesamtfunktion darstellt.

Teilfunktionen [Tf]	Wirkprinzip	Theoretisch beste Lösung	Theoretisch zweitbeste Lösung	Theoretisch Theoretisch zweitbeste Lösung drittbeste Lösung		
Tf_1	Lösungs- Klappe vorschlag		Lineartisch	Goniometer	- Klappe - Lineartisch	
	Energie	elektrisch	elektrisch	elektrisch	- Goniometer	
	Bewegungsart	rotatorisch	translatorisch	rotatorisch		
	Kommunikations- schnittstelle	-	-	-		
Tf_2	Lösungs- vorschlag	Twin-Line Positionierst.	Universelle Motoranst.	Pneumatische Speicherschal.	- Twin-Line Positionier-	
	Energie	elektrisch	elektrisch	pneumatisch	steuerung	
	Bewegungsart	-	-	-		
	Kommunikations- schnittstelle	CAN-Bus	RS-232-C	SPS		
Tf_3	Lösungs- vorschlag	Schrittmotor	Zylinder	AC-Synchron Servomotor	- Schrittmotor	
	Energie	elektrisch	pneumatisch	elektrisch		
	Bewegungsart	-	-	-		
	Kommunikations- schnittstelle	-	-	-		
Tf_4	Lösungs- vorschlag	Endschalter	Haltebremse	Nährungsschalter	- Endschalter - Nährungs-	
	Energie	elektrisch	elektrisch	induktiv	schalter	
	Bewegungsart	-	-	-		
	Kommunikations- schnittstelle	-	-	-		
Tf_5	Lösungs- vorschlag	Achromate	Mikroskope	Okulare	- Achromate	
	Energie	-	-	-		
	Bewegungsart	-	-	-		
	Kommunikations- schnittstelle	-	-	-		

Tab. 3-21 Ergebnis für die technisch beste Lösung

Konstruktionsmethodik

Teilfunktionen [Tf]	Wirkprinzip	Theoretisch beste Lösung	Theoretisch zweitbeste Lösung	Theoretisch drittbeste Lösung	Technisch beste Lösung
Tf_6	Lösungs- vorschlag	Strahlrotator mit Spiegel	Prisma	Glasfaser	- Strahlrotator
	Energie	-	-	-	
	Bewegungsart	-	-	-	
	Kommunikations- schnittstelle	-	-	-	
Tf_7	Lösungs- vorschlag	CCD Zeilenkamera	CCD Flächenkamera	Röhrenkamera	- CCD Zeilenkamera
	Energie	digital	digital	analog	
	Bewegungsart	-	-	-	
	Kommunikations- schnittstelle	-	-	-	
Tf_8	Lösungs- vorschlag	Blei	Eisen	Tetraboroxid	- Blei - Tetraboroxid
	Energie	γ-Strahlung	γ-Strahlung	Neutronen- strahlung	
	Bewegungsart	-	-	-	
	Kommunikations- schnittstelle	-	-	-	
Tf_9	Lösungs- vorschlag	Starre Aufhängung	Schwingungs-isol. Struktur	Elastomer Dämpfer	- Starre Aufhängung
	Energie	-	-	-	
	Bewegungsart	-	-	-	
	Kommunikations- schnittstelle	-	-	-	

Tab. 3-22 Ergebnis für die technisch beste Lösung

Es ist aus der Tabelle 3-21 und 3-22 zu erkennen, dass die theoretisch beste Lösung nicht gleich der technisch erst besten Lösung zur Erfüllung der Gesamtfunktion ist.

Bei der ersten Teilfunktion (Antrieb zur Positionierung) wurde sich für eine Klappe, Lineartisch und Goniometer entschieden. Die Entscheidung für den Einsatz aller drei Komponenten liegt darin, dass nicht das gesamte Meßsystem zum Strahl ausgerichtet werden soll, sondern auch der Strahl zum Meßsystem selbst.

Bei der vierten Teilfunktion (Antriebsstopp) wurde sich für ein Endschalter und einem Nährungsschalter entschieden. Dies liegt darin, dass schon bei den Antrieben zur Positionierung Endschalter oder Nährungsschalter intigriert sind.

Auch bei der achten Teilfunktion (Abschirmung von Strahlung) fand eine Entscheidung sowohl für Blei als auch Tetraboroxid statt. Der Grund dafür ist, dass Tetraboroxid für die Abschirmung gegen Neutronenstrahlung und Blei für die Abschirmung gegen γ -Strahlung verwendend werden soll.

4. Die Versuche und Berechnungen

Nach der Auswahl der einzusetzenden Komponenten wird nun anhand von Versuchen und Berechnungen das optische Abbildungssystem dimensioniert. Desweiteren soll mittels einer Berechnung der vermeindlichen statischen Durchbiegung durch Bleiabschirmung, Erkenntnisse auf die Stabilität der Grundplatte_2 gewonnen werden. Die Ergebnisse dienen dem weiteren konstruktiven Fortgang.

4.1 Die Dimensionierung des Abbildungssystems

Mittels eines Laborversuches soll für die horizontale und für die vertikale Vergrößerung m eine geeignete Brennweite f der einzusetzenden Achromaten gefunden werden. Dabei ist zu beachten, dass innerhalb der Bildweite b genügend Platz für den Einsatz des Strahlrotators, zur Drehung des Strahlprofils um 90° und der Bleiabschirmung gewährleistet ist.

Das Ziel des Laborversuches ist es, bei gegebener Vergrößerung in einer Ebene den Strahl in der anderen Ebene so scharf zu fokussieren, dass möglichst keine Intensität verloren geht. Das reelle Zwischenbild soll in der horizontalen Ebene um das 8fache und in der vertikalen Ebene um das 21fache vergrößert werden. Die am Monitor zu erkennenden Profilbreiten P_b sollen in beiden Ebenen kleiner als 100µm sein.²⁰

Zur Konzipierung einer geeigneten Abbildungsoptik sollen in diesem Abschnitt die Abmaße des zu vergrößernden reellen Zwischenbildes angegeben werden. In der Abbildung 1-4 (Emittanz-Monitor) ist zu erkennen, dass das reelle Zwischenbild nach der ersten Abbildung mittels eines Achromaten (Brennweite f = 1000mm) bei 1182,3mm liegt.²¹ Betrachtet man die Abbildung 4-1 so ist zu erkennen, dass das Synchrotron-Strahlprofil nicht eine runde, sondern eine ovale Form besitzt. Die Abmaße der ovalen Form betragen bei einer horizontalen Emittanz von 5,4 π nm rad der x-Ebene 457,1µm und bei einer vertikalen Emittanz von 0,54 π nm rad der y-Ebene 150µm.²²

20 Vgl.: Kube G., Strahlungsintensität am Betatron-Mismatch Monitor für HERAe, S. 1ff

21 Vgl.: Wittenburg K., Fischer R., Synchrotronstrahlung-Profilmonitor in HERAe, S. 5

²² Vgl.: Kube G., Strahlungsintensität am Betatron-Mismatch Monitor für HERAe, S. 1ff

Abb. 4-1 Das Synchrotron-Strahlprofil

4.1.1 Die horizontale und vertikale Profil-Vergrößerung

Versuchsziel:

Mit Hilfe einer Halogenlampe, einer Aluminiumfolie, eines Achromaten, einer Zylinderlinse (Breite = 18mm, Höhe = 9,5mm, Brennweite f = 10mm), des Strahlrotators (Kapitel 6.2.2.1) und einer Flächenkamera ist bei 8facher Vergrößerung das horizontale Profil und bei 21facher Vergrößerung das vertikale Strahlprofil zu bestimmen.

Aufbau und Versuchsdurchführung:

Abb. 4-2 Versuchsaufbau für die horizontale / vertikale Strahlprofil-Vergrößerung

Anzahl	Bezeichnung	Position
1	Halogenlampe (12V)	1
1	Aluminiumfolie (mit Bohrung)	2
4	Achromate f = 25, 40, 50 und 80mm	3
3	Filter $(1x D = 1 und 2x D = 3)$	4
1	Tubus mit der Zylinderlinse f = 10mm	5
1	Halter für den Tubus	6
1	Flächenkamera	7
3	Optische Schienen (2x 0,5m und 1x 0,25m)	8
4	Reiter	9
1	Monitor	10
1	Strahlrotator	11

Für den Versuch wurden folgende Geräte eingesetzt:

Tab. 4-1 Eingesetzte Geräte für horizontale / vertikale Vergrößerungsversuche

Der Versuch wurde wie folgt durchgeführt:

a) Horizontale Strahlprofil-Vergrößerung:

Als erstes wurde der Achromat mit der Brennweite f = 30mm in den Halter mittels einer Schraube montiert und an der optischen Achse OA ausgerichtet.

Dann wurde für die 8fache Vergrößerung m der Gesamtabstand A nach GI (12),die Gegenstandsweite g nach GI.(14) sowie die Bildweite b nach GI.(13) berechnet. Anschließend wurde das optische System nach den Berechnungen von A, g und b ausgerichtet. Die Strecke zwischen den drei Spiegeln des Strahlrotators musste berücksichtigt werden. Das heißt, die drei Spiegelstrecken mussten vom Gesamtabstand A abgezogen werden => A = -180mm (in der Tabelle 4-2 sind die 180mm noch nicht von A abgezogen).

Nach der Berücksichtigung des Gesamtabstandes A wurde der Strahlrotator eingesetzt und ebenfalls an der OA ausgerichtet.

Damit das reelle Zwischenbild die gleiche Dimension wie der Strahlfleck im Experiment hat, wurde mit Hilfe einer Bohrung in der Aluminiumfolie das reelle Zwischenbild simuliert.

Die Versuche und Berechnungen

Hierzu wurde die Aluminiumfolie mittels einer Halogenlampe bestrahlt, so dass die Bohrung auf dem Monitor zu erkennen war. Schließlich wurde der Bohrungsdurchmesser am Monitor mit Hilfe eines digitalen Meßschiebers abgegriffen und nach GI.(10) berechnet. So konnte die Ausdehnung des simulierten Zwischenbildes ermittelt werden.

Nach der Bestimmung der Größe des simulierten Zwischenbildes wurde der Tubus mit der Zylinderlinse vor der Flächenkamera positioniert, so dass die Zylinderlinse horizontal zur Chipebene der Kamera lag.

Am Monitor war dann ein vertikales Profil zu erkennen. Die Schärfe wurde über den Tubus eingestellt.

Dieses Profil wurde mit Hilfe eines digitalen Meßschiebers am Monitor abgegriffen, der Gl.(11) berechnet und protokolliert.

Danach wurden mit den Brenweiten f = 40mm, 50mm und 80mm der Versuch wiederholt.

b) Vertikale Strahlprofil-Vergrößerung:

Für den Versuch der vertikalen Vergrößerung wurde der Strahlrotator entfernt und der Abstand zwischen den Achromaten und der Flächenkamera verringert. Schließlich wurde der Versuch, wie schon in Punkt a) beschrieben, ohne Strahl-

rotator mit einem Achromaten der Brennweite f = 25mm wiederholt.

Formeln zur Berechnung der Tabelle 4-2 und 4-3:

Bohrungsdurchmesser:

$$d = \frac{x * D}{X} * m \tag{10}$$

- d = Bohrungsdurchmesser
- x = Chipbreite (x = 8,36mm)
- D = Am Monitor abgegriffener Bohrungsdurchmesser
- m = Vergrößerung (8fache und 21fache)
- X = Betrachtete Bildgöße am Monitor (X = 171mm)

Profilbreite:

$$P_b = \frac{x * B}{X}$$
(11)

P_b = Profilbreite

B = Am Monitor abgegriffene Profilbreite

Gesamtabstand:

$$A = f * \frac{(m+1)^2}{m}$$
(12)

A = Gesamtabstand

f = Brennweite

Bildweite:

$$b = \frac{A * m}{m+1} \tag{13}$$

b = Bildweite

Gegenstandsweite:

$$g = \frac{A}{m+1}$$
(14)

g = Gegenstandsweite

Die Meßergebnisse:

Das simulierte Zwischenbild in der Aluminiumfolie wurde nach der Gl.(10) bestimmt und betrug d = 0,27mm.

Nach den Versuchen wurden alle gemessenen und berechneten Ergebnisse der horizontalen und vertikalen Vergrößerungen in den folgenden Tabellen 4-2 und 4-3 zusammengetragen.

Horizontale Vergrößerung: m = 8									
f (Brennweite vom Achromat)	b nach Gl. [13]	g nach Gl. [14]	A nach Gl. [12]	B (am Momitor)	P ь (auf dem Chip) Gl. [11]				
[mm]	[mm]	[mm]	[mm]	[mm]	[µm]				
30,00	270,00	33,75	303,75	1,00	48,89				
40,00	360,00	45,00	405,00	0,80	39,11				
50,00	450,00	56,25	506,25	1,00	48,89				
80,00	720,00	90,00	810,00	1,00	48,89				

Tab. 4-2 Die Meßergebnisse für die horizontale Vergrößerung m = 8

Vertikale Vergrößerung: m = 21									
f (Brennweite vom Achromat)	b nach Gl. [13]	g nach Gl. [14]	A nach Gl. [12]	B (am Momitor)	P ⊾ (auf dem Chip) Gl. [11]				
[mm]	[mm]	[mm]	[mm]	[mm]	[µm]				
25,00	550,00	26,19	0,00	0,75	36,67				

Tab. 4-3 Die Meßergebnisse für die vertikale Vergrößerung m = 21

4.1.2 Die Auswertung

Bei dem Laborversuch der horizontalen Vergrößerung fiel die Entscheidung, zur Realisierung des Gesamtaufbaus des optischen Abbildungssystems den Achromaten mit der Brennweite 80mm einzusetzen. Dadurch wurde die Brennweite bei der vertikalen Vergrößerung automatisch auf 25mm bestimmt. Somit können beide Achromaten im zukünftigen Synchrotronlicht-Monitor nebeneinander montiert werden und lassen ausreichend Platz für den Strahlrotator und für die Bleiabschirmung (Abbildung 6-1).

4.2 Die Durchbiegung

An Hand der folgenden Beispielrechnungen soll die statische Durchbiegung der Grundplatte_2 (2_04_5510/A.009/2.7), worauf das gesamte optische Abbildungssystem montiert ist (Abbildung 4-3), ermittelt werden. Auf der einen Seite der Grundplatte_2 befindet sich die Zeilenkamera in einer Bleiabschirmung (\approx 180kg) und auf der anderen Seite die Abbildungsoptik (\approx 50kg). Die Grundplatte_2 soll wiederum auf einen Lineartisch montiert werden. Auf Grund dieser Verbindung (Grundplatte_2 und Lineartisch) wird davon ausgegangen, dass sich die Grundplatte_2 durchbiegen könnte und so eine Messung des Strahlprofils unmöglich gemacht wird. In dem Fall, dass die Durchbiegung f > 0,1mm ist, muss die Grundplatte_2 mit T-Profilen verstärkt werden.

Abb. 4-3 Gewichtsverteilung auf der Grundplatte_2

4.2.1 Beispielrechnung für statische Durchbiegung der Grundplatte_2

1.) Die Berechnung der statischen Durchbiegung welche durch die Bleiabschirmung entsteht:

Gegeben ist:

- F = 1.800N (Gewichtskraft)
- l = 190mm
- h = 20mm
- b = 300mm

E-Modul für Aluminium-Legierung von 60.000N/mm² bis 83.000N/mm²

Gesucht wird:

- die statische Durchbiegung f (Abbildung 4-4) für
 - das E-Modul = 60.000N/mm², das E-Modul = 83.000N/mm²
- das axiale Trägheitsmoment I (Abbildung 4-5)

Abb. 4-4 Statische Durchbiegung

Abb. 4-5 Axiales Trägheitsmoment

Die Formeln für die Berechnung der statischen Durchbiegung:

Axiales Trägheitsmoment:

$$I_x = \frac{b * h^3}{12}$$
(15)

Durchbiegung:

$$f = \frac{F * l^3}{3 * E * I} \tag{16}$$

Berechnung:

Axiales Trägheitsmoment nach der Gl.(15):

 $I_x = \frac{b * h^3}{12} = \frac{300 \, mm * (20 \, mm)^3}{12} = 200.000 \, mm^4$

Durchbiegung nach der Gl.(16):

für E = 60.000N/mm²

 $f = \frac{F * l^3}{3 * E * I} = \frac{1.800 N * (190 mm)^3}{3 * 60.000 N / mm^2 * 200.000 mm^4} = 0.34 mm$

für E = 83.000N/mm²

 $f = \frac{F * l^3}{3 * E * I} = \frac{1.800 N * (190 mm)^3}{3 * 83.000 N / mm^2 * 200.000 mm^4} = 0.25 mm$

2.) Die Berechnung der statischen Durchbiegung welche durch die Abbildungsoptik entsteht:

Gegeben ist:

- F = 500N (Gewichtskraft)
- l = 190mm
- h = 20mm
- b = 300mm

E-Modul für Aluminium-Legierung von 60.000N/mm² bis 83.000N/mm²

Gesucht wird:

- die Durchbiegung f (Abbildung 4-4)
- das axiale Trägheitsmoment I (Abbildung 4-5)

Berechnung:

Axiales Trägheitsmoment nach der Gl.(15):

$$I_x = \frac{b * h^3}{12} = \frac{300 \, mm * (20 \, mm)^3}{12} = 200.000 \, mm^4$$

Durchbiegung nach der Gl.(16):

für E = 60.000N/mm²

 $f = \frac{F * l^3}{3 * E * I} = \frac{500 N * (190 mm)^3}{3 * 60.000 N / mm^2 * 200.000 mm^4} = 0,1 mm$

für E = 83.000N/mm²

$$f = \frac{F * l^3}{3 * E * I} = \frac{500 N * (190 mm)^3}{3 * 83.000 N / mm^2 * 200.000 mm^4} = 0,07 mm$$

4.2.2 Die Auswertung

Die Berechnungen zeigen, dass die statischen Durchbiegung f in beiden Fällen \geq 0,1mm ist. Da sich das E-Modul bei anderen Aluminium-Legierung nicht wesentlich ändert, muss die Form der Grundplatte_2 verändert werden. Daher wird eine Verstärkung der Grundplatte_2 durch vier Aluminium T-Profile (3_04_5510/A. 008/2.7) in der weiteren Konstruktion berücksichtigt (Abbildung 7-5).

5. Gesamtfunktion

In der Abbildung 5-1 ist ein Überblick der Gesamtfunktion des Synchrotronlicht-Monitors dargestellt.

Abb. 5-1 Darstellung der Gesamtfunktion des Synchrotronlicht-Monitors

Das Gesamtsystem des Synchrotronlicht-Monitors setzt sich aus folgenden drei Unterbaugruppen zusammen dem optischen Abbildungssystem, der fernsteuerbaren Positioniereinheit und der Monitor-Box. In den folgenden Kapiteln 6 bis 8 werden die einzelnen Unterbaugruppen dargestellt und beschrieben. Es soll nicht auf jeden einzelnen Schritt zur Erfüllung der Gesamtfunktion eingegangen werden, sondern auf die technisch interessanteren relevanten Punkten:

- wie die ausgewählten Komponenten konstruktiv in das System integriert wurden
- wie die Komponenten montiert, angeschlossen und angesteuert werden,
- sowie deren technischen und mechanischen Eigenschaften.

Gesamtfunktion

Nach der Beschreibung der Unterbaugruppen wird in Kapitel 9 eine Gesamtübersicht der elektrischen Anschlußelemente des Monitors und deren Ansteuerung vom BKR aus bis hin zum Monitor schematisch dargestellt und beschrieben.

Alle technischen Datenblätter sowie die Einzelteilzeichnungen, die in den folgenden Kapiteln erwähnt werden, sind aus dem Anhang A, die technische Datenblätter und dem Anhang B, die Einzelteilzeichnungen zu entnehmen.

Hinweise hierauf befinden sich in den oben genannten Kapiteln sowie unter folgenden Punkten A1, A2, usw..

Die Einzelteilzeichnungen wurden mit einer, von DESY vorgeschriebenen Zeichnungsnummer (beispielsweise: 4_04_5510/A.040/2.7) deklariert.

6. Das optische Abbildungssystem

In der Abbildung 6-1 wird das gesamte optische Abbildungssystem, die eingesetzten Komponeneten und der Strahlverlauf in der Grundstellung gezeigt. Die ausgewählten und eingesetzten Komponenten sowie deren Montage werden in den folgenden Kapitel 6-1 bis 6-3 beschrieben.

Abb. 6-1 Das gesamte optische Abbildungssystem

6.1 Die Strahlpositionierung

Durch die unterschiedlichen Aufbauten der Abbildungsoptiken von Emittanz- und Synchrotronlicht-Monitor besitzen beide Monitore unterschiedliche optische Achsen. Die Folge daraus ist, dass sich der vom Emittanz-Monitor abgelenkte und im Synchrotronlicht-Monitor eintreffende Strahl nicht mehr auf der gewünschten optischen Achse befindet, sondern parallel daneben. Um den Strahl wieder auf die optische Achse im Synchrotronlicht-Monitor zu justieren, werden zwei weitere Ablenkspiegel in das optische System integriert. Die zusätzlichen Ablenkspiegel sind so angeordnet, dass der Strahlverlauf sich wieder auf der optischen Achse der Abbildungsoptik im Synchrotronlicht-Monitor befindet (Abbildung 6-1). In der Abbildung 6-2 wird die Anordnung der Strahlpositioniervorrichtung dargestellt.

Die aluminiumbeschichteten Spiegel vom Durchmesser 25,4mm mit einer erhöhten Reflexion (93% von 450 bis 700nm) sind in einer kardanischen Halterung befestigt. Diese ermöglicht eine Feineinstellung, die über zwei, sich auf der Rückseite befindenden Feinstellschrauben, ermöglicht wird.

Abb. 6-2 Die Strahlpositioniervorrichtung

Desweiteren ist in der Abbildung 6-2 zu erkennen, dass sich zwischen beiden Ablenkspiegeln eine Halterung für den Einsatz eines Achromaten befindet. Der Grund für den zusätzlichen Achromaten mit einer Brennweite von f = 100mm ist, dass sich das reelle Zwischenbild durch eine konstruktive Veränderung der Aufhängung der Monitor-Box im Beschleunigertunnel HERA, von der vorherigen Position verlagert hat, und zwar um 400mm vor der ursprünglichen vorgesehenen Position. Die Korrektur erfolgt über eine Nachvergrößerung von 1:1, die durch den Achromaten mit f = 100mm ermöglicht wird. Durch die Nachvergrößerung wird das reelle Zwischenbild unverändert auf die gewünschte Position weitertransportiert.

Konstruktiv wurde die Strahlpositionier- bzw. Korrektureinheit gelöst, indem alle drei Komponenten auf einem Montageprofil der Firma Rose und Krieger ausgerichtet wurden. Die durch Nutensteine, die in der Nut des Montageprofils verlaufen und mittels Zylinderschrauben, fixiert wurden. Als Verbindungselemente zwischen Stifthalter (Stift: 4_04_5510/A.018/2.7) und dem Montageprofil dienen zum einen für die jeweiligen Spiegelhalter zwei unterschiedliche Adapterplatten (4_04_5510/A.017/2.7) und 4_04_5510/A.016/2.7) und zum anderen eine weitere Adapterplatte (4_04_ 5510/A.037/2.7) für den Achromaten.

6.2 Die Strahlvergrößerung

Durch die gegebenen Anforderungen und die bereits durchgeführten Laborversuchen wurden die benötigten Strahlvergrößerungsoptiken diskutiert und dimensioniert. In den folgenden Kapiteln 6.2.1 bis 6.2.3 soll nun speziell auf die konstruktive Umsetzung eingegangen werden, das heißt wie die ausgewählten Komponenten auf der 300x220mm großen Montageplatte angeordnet und montiert wurden. Das gesamte Vergrößerungssystem, der Photomultiplier und der Strahlverlauf in der Grundstellung wird in Abbildung 6-3 gezeigt.

Abb. 6-3 Anordnung der optischen Komponenten für die Strahlvergrößerung

6.2.1 Die vertikale Vergrößerung

In Abbildung 6-4 ist die Anordnung der vertikalen Vergrößerungsoptik mit dem Strahlverlauf in der Grundstellung dargestellt. Die gesamte Halte- und Justagevorrichtung für die Vergrößerungsoptik ist in Abbildung 6-5 zu sehen.

Abb. 6-4 Anordnung der Vergrößerungsoptik

Der Achromat mit f = 25mm wird in einen Optikhalter durch eine Schraube befestigt. Der Optikhalter ist über einen Stift (4_04_5510/A.023/2.7) mit der Verstelleinheit verbunden. Die Ausrichtung zur optischen Achse erfolgt manuell über eine Rändelschraube, die sich in der Verstelleinheit befindet. Als Verbindungselement zwischen Montageplatte und Vergrößerungseinheit dient eine weitere Adapterplatte (4_04_5510/A.002/2.7), die durch zwei Zylinderschrauben fixiert ist. Sie ist an beiden Enden mit offenen Langlöchern versehen, wodurch eine Nachjustierung ermöglicht wird.

6.2.2 Die horizontale Vergrößerung

Die Anordnung der horizontalen Vergrößerungsoptik auf der Montageplatte, sowie der Strahlverlauf bei einem Positionswechsel von der Grundeinstellung in die nächste Meßstellung ist in der Abbildung 6-6 zu sehen. Der für die horizontale Vergrößerung eingesetzte Achromat mit f = 80mm wird auf fast exakter Höhe, neben der vertikalen Optik montiert. Die Verbindungselemente der Vergrößerungseinheit sowie deren Aufbau auf der Montageplatte ist analog zur vertikalen Vergrößerungeinheit (Kapitel 6.2.1).

Abb. 6-6 Anordnung der horizontalen Vergrößerungsoptik

6.2.2.1 Der Strahlrotator

Damit eine horizontale Strahlprofilaufnahme ermöglicht werden kann wird ein Strahlrotator eingesetzt. Der Strahlrotator wird hinter der Vergrößerungsoptik (Abbildung 6-3) an der optischen Achse ausgerichtet.

In Abbildung 6-7 ist der Strahlrotator sowie der Strahlverlauf durch die drei Spiegel dargestellt. Entwickelt und konstruiert wurde der Strahlrotator im Rahmen eines Praktikums bei DESY in der Gruppe MDI-2.

Abb. 6-7 Der Strahlrotator

Das Prinzip des Strahlrotators ist wie folgt: der Strahl wird durch drei Spiegel abgelenkt, die auf einer 45° geneigten Platte montiert und ausgerichtet sind. Durch die Neigung der Spiegel um den Winkel $\varphi = 45^\circ$, wird das vertikale Strahlprofil um 2 φ = 90° gedreht. Die 45° Neigung kann über einen Neigetisch nachjustiert werden. Damit nicht der ausfallende Strahl die optische Achse verlässt kann der Strahlrotator zusätzlich über einen Drehtisch verstellt werden.

Das optische Abbildungssystem

Durch eine leichte Drehung des Strahlrotators und über die Justierung der einzelnen Spiegel ist garantiert, dass der ausfallende Strahl deckungsgleich mit dem einfallenden Strahl ist. Die Befestigung des Strahlrotators auf der Montageplatte erfolgt mittels zweier Adapterplatten (4_04_5510/A.001/2.7).

6.2.3 Der Photomultiplier

Der Photomultiplier dient der Signalkontrolle und zur Einstellung des Timings, es wird überprüft, ob der eintreffende Strahl sich auch auf der optischen Achse befindet. Sollte es nicht der Fall sein, müssen die Ablenkspiegel gegebenenfalls nachjustiert werden.

Der Photomultiplier wandelt das Lichtsignal in einen elektrischen Strom um und wird mit Hilfe eines Oszilloskops zu erkennen bzw. abzulesen sein.

In der Abbildung 6-8 wird die Anordnung des Photomulipliers auf der Montageplatte sowie der Strahlverlauf dargestellt. Der Photomultiplier ist von der Firma Hamamatsu mit der Bezeichnung R2496.

Abb. 6-8 Anordnung des Photomultipliers auf der Montageplatte

Die Haltevorrichtung sowie die Montageanordnung des Photomultiplier wird in den Abbildungen 6-9 und 6-10 dargestellt.

Der Photomultiplier ist auf einen Sockel gesteckt und wird mit einer Hochspannung von 1250V versorgt (siehe Anhang A Punkt A1). Der Sockel ist gegen Verdrehen und Verschieben gesichert, indem dieser in einen Halter (4_04_5510/A.020/2.7) durch zwei Schrauben geklemmt wird. An der Flanschseite des Halters ist ein Tubus zum Schutz des Photomultipliers vor Fremdlicht montiert. Der Strahl wird durch einen Achromaten auf einer Blende fokussiert.

Um alle Komponenten gleichmäßig an der optischen Achse auszurichten ist ein Würfel notwendig, in dem Halter, Sockel, Tubus und Photomultiplier befestigt wurden. Durch die Verwendung von vier Führungsstangen werden die Optikhalter, in denen zum einen die Blende und zum anderen der Achromat montiert sind, positioniert. Die Längen der Führungsstangen wurden so gewählt, dass genügend Abstand für die Fokussierung der optischen Komponenten gewährleistet ist. Das gesamte System wird mit Hilfe zweier Stangenhalter am Klemmblock verschraubt. Als Führung für den Klemmblock dient eine Säule (3_04_ 5510/A.019/2.7), welche mit einer Verstelleinheit verbunden ist. Über Klemmblock und Verstelleinheit kann die gesamte Haltevorrichtung für den Photomultiplier manuell an der optischen Achse ausgerichtet werden.

Photomultiplier Halterung Tubus Optikhalter Optikhalter Würfel Kürfel

Abb. 6-9 Haltevorrichtung für Photomultiplier

Abb. 6-10 Montageanordnung für Photomultiplier

6.3 Die Aufnahme des Strahlprofils

Zur Aufnahme des Strahlprofils wird eine Zeilenkamera der Firma ATMEL Typ AviivA M2 CL eingesetzt. In Abbildung 6-11 ist diese mit der Haltevorrichtung sowie dem Tubus für die Zylinderlinse dargestellt. Im Unterkapitel 6.3.1 werden die Bildübertragung und die elektrischen Anschlüsse der Zeilenkamera erläutert, im Kapitel 6.3.2 wird auf das Trigger-System eingegangen.

Abb. 6-11 Zeilenkamera mit Haltevorrichtung für die Zylinderlinse

Die Chiplänge der Zeilenkamera beträgt 7,2mm und setzt sich aus den Bildpunkten (512) x Pixelgröße (14µm) zusammen. Weitere technische Daten wie Video-Ausgang, Datenrate, usw. sind dem Anhang A unter Punkt A2 zu entnehmen.

Die Verbindung zwischen Zylinderlinse und Zeilenkamera wurde wie folgt gelöst: Der Halter für den Tubus wird auf einen Adapterring, welcher mit drei Befestigungsschrauben an der Kamera montiert ist, über C-Mount verschraubt. Die Zylinderlinse ist auf dem Tubus (Abbildung 6-11) mit Zwei-Komponenten-Kleber verklebt. Anschließend kann der Tubus mit der Zylinderlinse in den Halter eingeführt, horizontal zum Chip ausgerichtet und mit einer Schraube fixiert werden. Es wurden zwei Sicherheitsmaßnahmen zum Schutz der Zeilenkamera bzw. des Chips vor zur hoher Strahlungsbelastung getroffen. Zum einen wird der Chip in der Zeilenkamera dadurch geschützt, dass die Kamera nur über einen Ablenkspiegel in Richtung des Teilchenstrahls schaut. Zum anderen ist die Kamera in einer 50mm dicken Blei-Box eingeschlossen. In der Abbildung 6-12 wird die Anordnung der Zeilenkamera und die Bleiabschirmung schematisch dargestellt.

Abb. 6-12 Schematische Darstellung der Blei-Box mit Zeilenkamera

6.3.1 Bildübertragung und die elektrischen Anschlüsse der Zeilenkamera

In diesem Abschnitt wird die Bildübertragung vom Synchrotronlicht-Monitor über LWL zum PC, die dazugehörigen elektrischen Anschlüsse dargestellt und beschrieben. In der Abbildung 6-13 wird das schematische Verdrahtungslayout der Bildübertragung gezeigt.

Abb. 6-13 Schematische Verdrahtung der Bildübertragung
Von der Zeilenkamera wird das Bildsignal als digitales Videosignal bereitgestellt. Zum Transport aus dem Beschleunigertunnel in den externen Messraum, wird das digitale Videosignal mit Hilfe eines Wandlers (Abbildung 6-13 und 6-14) auf einen Lichtwellenleiter umgewandelt.

In diesem Raum wird das über LWL transportierte Signal mit Hilfe eines weiteren Wandlers wieder zu einem digitalen Videosignal rückgewandelt. Über Camera Link wird das digitale Videosignal an eine Framegrabber-Karte weitergeleitet. Mit der serielle Schnittstelle RS-232 kann, ebenfalls über die Framegrabber-Karte, die Zeilenkamera eingestellt werden. Bei der Framegrabber-Karte handelt es sich um eine PCI-Einsteckkarte für einen PC (Windows NT/2000/XP). Die im Rechner einzelnen aufgenommenen Strahlprofilbilder können online analysiert werden. In der Abbildung 6-14 werden die beiden 24-Bit Wandler von der Firma Arvoo gezeigt.

Abb. 6-14 Schematische Darstellung des 24-Bit Wandlers

Alle technischen Daten zur Framegrabber-Karte und zum Wandler sind aus dem Anhang A den Punkten A3 und A4 zu entnehmen.

6.3.2 Das Trigger-System

Die Teilchen im Beschleuniger laufen nicht als kontinuierlicher Strom, sondern in einzelnen sehr kurzen Paketen (sog. Bunchen) um. Über das Trigger-System erhält die Kamera ein zu einem umlaufenden Bunch zeitlich synchrones Signal, so dass Shutter-Stellung und Belichtungszeit eingestellt werden können, dass nur die Synchrotronstrahlung von einem einzelnen Bunch aufgenommen wird.

Da das Trigger-System zur Zeit noch nicht zur Verfügung steht, wird in diesem Abschnitt nur auf das bereits vorhandene Grundkonzept eingegangen. Bei HERAe^{+/-} laufen minimale 3 Bunche (zeitlicher Abstand 92ns) mit einer Umlauffrequenz von 47kHz (Abbildung 6-15), maximal werden 186 Bunche gefüllt.

Abb. 6-15 Anordnung der minimalen Bunche im Beschleuniger

In der Abbildung 6-16 wird der Transfer vom Vorbeschleuniger PETRAe^{+/-} in HERAe^{+/-} gezeigt.

Abb. 6-16 Injektions-Brücke von PETRAe nach HERAe

Um die Shutter-Stellung der Zeilenkamera mit einem Bunch zu synchronisieren, werden zwei Trigger-Signale miteinander über eine AND-Verknüpfung verbunden.

Das erste Signal ist das Injektionssignal von PETRAe^{+/-} nach HERAe^{+/-}. Daraus ergibt sich der Injektions-Trigger (Abbildung 6-16). Gesetzt wird der Injektions-Trigger, wenn der erste Bunch von PETRAe^{+/-} nach HERAe^{+/-} transferiert wird.

Als zweites Signal dient der bereits im HERA-Beschleuniger eingesetzte Umlauf-Trigger (Abbildung 6-16). Dieser Umlauf-Trigger gibt die Position vom ersten Bunch für jeden Umlauf vor. In der Abbildung 6-17 werden Umlauf- und der Injektions-Trigger durch eine Rechteckkurve dargestellt.

Abb. 6-17 Zeitlicher Verlauf von Umlauf- und Injektions-Triggers

In der Abbildung 6-18 wird das Grundprinzip des Trigger-Systems dargestellt. Als nächstes soll die AND-Verknüpfung der beiden Trigger-Signale beschrieben, sowie die Verbindung mit dem Kamerasystem dargestellt werden.

Abb. 6-18 Das Grundprinzip des Trigger-Systems

Als erster Schritt wird das Injektions-Trigger-Signal mit Hilfe eines Time-Strechers auf ca. 2ms verlängert und durch eine AND-Verknüpfung mit dem Umlauf-Trigger, ein mit einem umlaufenden Bunch zeitlich synchrones Signal erzeugt, das für die ersten ~100 Umläufe eines Bunches zur Verfügung steht. Zum Feintuning dieser Signale mit dem Zeitpunkt des Vorbeifluges eines Bunches am Meßplatz ist eine variable Delay-Einheit vorgesehen.

Da die minimale Shutter-Stellung zu groß ist, den ersten oder den zweiten Bunch alleine zu belichten, kann nur der letzte Bunch eines 3er Zuges isoliert aufgenommen werden. Die zeitliche Anpassung des Triggers erfolgt ebenfalls mit Hilfe der Delay-Einheit.

7. Die fernsteuerbare Positioniereinheit

In den Kapiteln 7-1 bis 7-5 werden die zuvor in der Konstruktionsmethodik ausgewählten Komponenten, die für die fernsteuerbare Positioniereinheit zum Einsatz kommen, dargestellt und erläutert.

7.1 Der Antrieb zur Positionierung: rotartorisch

Die eingesetzten Spiegel zum Ablenken des Strahls vom Emittanz-Monitor in den Synchrotronlicht-Monitor werden mit einem Klappmechanismus und einem Goniometer in die gewünschte Position gebracht. In Abbildung 7-1 wird die Anordnung der beiden rotatorischen Positioniereineiten und der Strahlverlauf gezeigt.

Abb. 7-1 Die Anordnung der rotatorischen Positioniereinheiten

7.1.1 Der Klappspiegel

Der Klappspiegel dient zur Strahlablenkung vom Emittanz-Monitor zum Synchrotronlicht-Monitor und ist eine Eigenkonstruktion der Gruppe MDI-2.

Die Funktion des Klappspiegels wird in der Abbildung 7-2 schematisch dargestellt.

Abb. 7-2 Schematische Funktions-Darstellung des Klappspiegels

Der Spiegel wird mittels Zwei-Komponenten-Kleber auf den Spiegelhalter befestigt. Der Spiegelhalter selbst wird an der Motorwelle ausgerichtet und durch eine Schraube fixiert. Wird der Motor mit 24V-Spannung gespeist, dreht sich die Motorwelle und der Spiegelhalter klappt bis zum voreingestellten Stopper (1-Stellung), wodurch der Strahl um 90° nach oben abgelenkt wird. Durch das Abstellen der 24V-Spannung klappt der Spiegelhalter aufgrund seines Eigengewichtes wieder in die Ruhelage (0-Stellung) zurück. Der Klappspiegel wird auf einer Dreikantschiene an der optischen Achse des Emittanz-Monitor ausgerichtet und durch eine Schraube gesichert.

7.1.2 Das Goniometer

Das eingesetzte Goniometer von der Firma Micro-controle soll nicht nur zur Strahlablenkung dienen, sondern auch zur Justage des Strahls auf der optischen Achse. Die Funktionsaufgaben des Goniometer sind in der Abbildung 7-3 schematisch dargestellt.

Abb. 7-3 Schematische Funktions-Darstellung des Goniometers

Zur Strahlablenkung ist auf der Waagschale (Abb. 7-3) ein Spiegel befestigt. Die Korrektur des Strahlverlaufes erfolgt durch das Verändern der Winkeleinstellung der Waagschale. Dadurch wird der Strahl wieder auf die gewünschte optische Achse gelenkt. Das Goniometer bzw. die Waagschale wird mit einem 3-Phasen-Schrittmotor betrieben.

In der Abbildung 7-4 ist die konstruktive Anordnung des Goniometers in der Monitor-Box gezeigt.

Abb. 7-4 Die Montage des Goniometers in der Monitor-Box

Das Goniometer wird mit Zylinderschrauben auf eine Adapterplatte (4_04_5510/ A.015/2.7) montiert. Diese Platte ist wiederum auf ein Rose und Krieger Montageprofil ausgerichtet und durch Zylinderschrauben und Nutensteine fixiert. An beiden Enden des Montageprofils sind Gelenke angeschraubt, so dass das Profil in einer 45° Stellung befestigt werden kann. Der Grund für die 45°-Stellung ist, dass der Strahl auch um 90° abgelenkt werden kann.

7.1.3 Die technischen Daten

Da die Firma Micro-controle keine Goniometer mehr herstellt und auch keine technischen Daten zur Verfügung stehen, können keine detaillierten Angaben zu dem Goniometer gemacht werden.

7.2 Der Antrieb zur Positionierung: translatorisch

Zur translatorischen Positionierung werden zwei Lineartische eingesetzt. Der erste Lineartisch mit Hub 120mm, auf dem das gesamte Meßsystem montiert ist, wird zur Fokussierung der einzelnen Meßpunkte bzw. Optiken (Kapitel 6.2) verwendet. Mit dem zweiten Lineartisch mit Hub 90mm werden alle drei Meßpunkte angefahren. Die beiden eingesetzten Lineareinheiten sind von der Firma Berger Lahr (Typen-Bezeichnung LT-100). In der Abbildung 7-5 wird die Platzierung sowie die Montage der beiden Lineareinheiten gezeigt.

Abb. 7-5 Gesamtdarstellung der translatorischen Positioniereinheit

Zur Fokussierung der einzelnen Meßpunkte wird der Lineartisch mit Hub von 120mm auf die Grundplatte_1 (3_04_5510/A.011/2.7) in die gewünschte Lage über Nutensteine ausgerichtet und mit der Grundplatte_1 verschraubt (Abbildung 7-6).

Abb. 7-6 Montage des Lineartisches Hub 120mm mit der Grundplatte_1

Da es bei einer translatorischen Bewegung des Linartisches zur einer Kollision zwischen Schrittmotor und der Grundplatte_2 kommen kann, wird auf dem Lauftisch des Lineartisches eine Adapterplatte (4_04_5510/A.010/2.7) zur Abstandserweiterung montiert (Abb. 7-6). Die Grundplatte_2 (2_04_5510/A.009/2.7) wird auf diese Adapterplatte gesetzt. Auf der Grundplatte_2 ist der zweite Lineartisch mit einem Hub von 90mm befestigt. Um die einzelnen Meßpunkte anzufahren, ist der zweite Lineartisch um 90° zum ersten zugedreht (Abbildung 7-7).

Abb. 7-7 Montage des Lineartisches Hub 90mm mit der Grundplatte_2

Zwischen der Montageplatte, worauf sich das ganze optische System befindet (Abb. 6-3) und dem Lineartisch mit dem Hub 90mm ist ebenfalls eine weitere Adapterplatte (4 04 5510/A.038/2.7) montiert (Abbildung 7-7).

Die gesamte Positioniereinheit wird über vier Führungsstifte (Abb. 7-5), die mit der Grundplatte_1 verschraubt sind, in die Nut des Montageprofils der Rahmenkonstruktion (Kapitel 8.1.1) eingesetzt und in die gewünschte Position geschoben.

7.2.1 Die technischen Eigenschaften

1.) Die besonderen Merkmale der Lineareinheiten von Berger Lahr:

- Hohe-Systemsteifigkeit durch das spezielle Aluminium-Grundprofil.
- Kompakte Außenmaße, der Hub kann millimetergenau ausgelegt werden.
- Servicefreundliche Bauweise mit eingebauter Zentralschmierung für hohe Verfügbarkeit.
- Einfache Integration durch Profiltechnik und steckbare Anschlüsse.
- Spielfreie Bewegung durch vorgespannte Kugelumlaufführungen und Kugelgewindeantrieb.
- Ein optimales Preis / Leistungsverhältnis gegenüber anderen Firmen.

2.) Hub / Verfahrweg und Sicherheitsabstand des LT-100:

Die Lineartische von Berger Lahr werden hubgenau nach Kundenwunsch gefertigt. Es gibt einen Minimal- und einen Maximalhub.

- Der Hub ist der Weg, den der Laufwagen zwischen den Schaltpunkten des negativen und des positiven Endschalter zurücklegt.
- Danach kommt ein Sicherheitsabstand S (Abbildung 7-8), der als Überlauf bis zur Komprimierung des Faltenbalges zur Verfügung steht.
 Die Sicherheitsabstände variieren, je nach Hub und Gesamtlänge des Lineartisches.

- Sicherheitsabstand min. - max. beim LT-100 ist 7 – 10mm²³

Abb. 7-8 Sicherheitsabstand und Hub des LT-100

3.) Die Gesamtlänge der Lineareinheiten:

Wie schon bereits zuvor erwähnt hat der erste Lineartisch einen Hub von 120mm und der zweite einen Hub von 90mm. Die Gesamtlänge L (ohne Motor) ergibt sich durch den vorgegebenen Hub automatisch und wird nach der Gl. 17 (von Berger Lahr) berechnet.

$$L = 205 + (Hub * 1,38532) \tag{17}$$

Für den ersten Lineartisch (Hub 120mm) ergibt sich daher eine Gesamtlänge von 371mm und für den Zweiten (Hub 90mm) 330mm.²⁴

4.) Die Genauigkeit:

Die folgende Auflistung der Genauigkeiten (Punkte a-c) spielen in der Gesamtfunktion eine wesentliche Rolle, da bei zu großen Abweichungen die Aufnahme des Strahlquerschnittes nicht mehr garantiert werden kann. Alle angegebenen Werte gelten in aufgespanntem Zustand, ausgehend von einer ideal ebenen Aufspannfläche.

a.) Die Ablaufgenauigkeit:

Abb. 7-9 Ablaufgenauigkeit der Lineareinheit LT-100

b) Die Positioniergenauigkeit:

Die Positioniergenauigkeit hängt im Wesentlichen von der Genauigkeitsklasse der Gewindespindel ab. In beiden Lineartischen ist eine geschälte IT-7 Spindel eingebaut. Die Toleranzklasse ist aus der Tabelle 7-1 zu entnehmen.²⁵

²⁴ Vgl.: Berger Lahr, Katalog Lineartische, S. 6

²⁵ Vgl.: Berger Lahr, Katalog Lineartische, S. 2

	Gewindelängen [mm]			
	über		315	400
	bis	315	400	500
Toleranzklasse [+/- μm]	IT-7	52	57	63

Tab. 7-1 Genauigkeitsklasse der geschälten IT-7 Spindel

c) Die Wiederholgenauigkeit:

Die Wiederholgenauigkeit beschreibt die Abweichung der Lineareinheit, die beim wiederholten Anfahren der selben Position erlaubt ist. Die Wiederholgenauigkeit für Berger Lahr Lineartische beträgt ±0,02mm. Dieser Wert wird beeinflußt durch Temperaturänderung, Geschwindigkeit sowie Last.²⁶

5.) Das Grundprofil:

Das Grundprofil ist ein Präzisions-Aluminiumprofil, welches folgende Vorteile bietet:

- Maximale Steifigkeit bei minimalem Gewicht.
- Einfache Montage und Kombination mit anderen Modulen.
- Kompakte Bauweise, die Mechanik und Sensorik ist geschützt.
- Zum Schutz der Oberfläche sind die Aluminiumteile natur eloxiert.

6.) Der Kugelgewindetrieb:

Die Laufwagen der Lineartische werden mechanisch durch eine geschälte Gewindespindel der Qualitätsklasse IT-7 (Kapitel 7.2.1 Punkt 4b) angetrieben. Die Lagerung der Gewindelspindel ist motorseitig als Festlagerung und am offenen als Loslagerung ausgeführt. Der Kugelgewindeantrieb ist vorgespannt, Abstreifer an der Mutter verhindern das Eindringen von Schmutz.

7.) Die Führung:

Das eingebaute lineare Führungssystem besteht aus zwei Führungsschienen mit jeweils zwei Kugelumlaufelementen mit integrierter Kugelkette. Dieses System ermöglicht eine hohe Laufruhe und Lebendsdauer, auch bei hohen Lasten und Momenten.²⁷

²⁶ Vgl.: Berger Lahr, Katalog Lineartische, S. 2

²⁷ Vgl.: Berger Lahr, Katalog Lineartische, S. 3

Das Führungssystem ist vorgespannt, Abstreifer verhindern auch hier das Eindringen von Schmutz.²⁸

8.) Die Zentralschmierung:

In der Abbildung 7-10 ist die Zentralschmierung dargestellt. Regelmäßige Nachschmierung ist Voraussetzung für eine hohe Lebensdauer, besonders bei hohen Lasten und Geschwindigkeiten. Auf beiden Seiten des Laufwagens befindet sich je eine zentrale Schmierstelle. Je nach Zulässigkeit kann an einem Schmiernippel der Kugelgewindeantrieb und das Führungssystem nachgeschmiert werden.

Abb. 7-10 Darstellung der zentralen Schmierstelle

9.) Die Umgebungsbedingungen:

- Die Umgebungstemperaturen betragen -10°C bis +40°C.
- Die Endschalter sind für den Einsatz im Vakuum nicht geeignet.
- Die Lager- und Transporttemperatur betragen -25°C bis +70°C.

10.) Die Motoranbauvarianten:

Berger Lahr bietet eine Reihe von verschiedenen Motoranbauvarianten. In diesem Fall wurde für den ersten Lineartisch ein gerader Motoranbau gewählt (Abbildung 7-11). Für den zweiten Lineartisch wurde aus Platzgründen ein Motoranbau horizontal rechts, innen ausgewählt. Im aktuellen Katalog ist nur ein links, innen Motoranbau dargestellt (Abbildung 7-12).²⁹

²⁸ Vgl.: Berger Lahr, Katalog Lineartische, S. 3

²⁹ Vgl.: Berger Lahr, Katalog Lineartische, S. 3f

Abb. 7-11 Motoranbau gerade

Abb. 7-12 Motoranbau horizontal links, innen

7.2.2 Die technischen Daten

Die von Berger Lahr angegebenen technischen Daten sind aus dem Anhang A Punkt A5 zu entnehmen.

7.3 Der Antriebsmotor

Für die beiden Lineareinheiten werden 3-Phasen-Schrittmotore (Typ: VDRM 368) eingesetzt. Sie sind, wie die beiden eingesetzten Lineareinheiten, ebenfalls von der Firma Berger Lahr (Abbildung 7-13).

Abb. 7-13 3-Phasen-Schrittmotor Typ: VDRM 368

1.) Die besonderen Merkmale des 3-Phasen-Schrittmotors sind:

- Durch die optimierte Innengeometrie des Motors wurde eine hohe
 Leistungsdichte erreicht; das heißt bis zu 50% mehr Drehmoment gegenüber herkömmlichen Schrittmotoren in vergleichbarer Baugröße.
- Diese Motoren sind äußerst robuste, wartungsfreie Antriebe und erfahrungsgemäß strahlungsbeständig.
- Sie führen präzise schrittweise Bewegungen aus, die von einer Positioniersteuerung vorgegeben werden.
- Ein weiteres Merkmal ist der verhältnismäßig geringe Preis.³⁰

7.3.1 Die Pinbelegung der Motorbuchse

In der Abbildung 7-14 ist die Motorbuchse und in der Tabelle 7-2 die dazugehörige Pinbelegung aufgelistet.

Abb. 7-14 Motorbuchse

Motoranschluß 6polig	Signal	Farbe
1	U	braun
2	V	blau
3	W	schwarz
-	-	rot
-	-	grau
Erde	Schutzleiter	(Beilauflitze)

Tab. 7-2 Die Pinbelegung der Motorbuchse

7.3.2 Die technischen Eigenschaften

- Prüfspannung nach DIN VDE 0530
- Schutzart:
 - Motorgehäuse: IP 56
 - Wellenaustritt vorne: IP 41
 - Isolierstoffklasse: F
 - Motor mit Einbaudose 90°
 - Baugröße (Flansch): 57,2 x 57,2)mm^{2 31}

7.3.3 Die technischen Daten

Die von Berger Lahr angegebenen technischen Daten, für den 3-Phasen-Schrittmotor VRDM 368, sind aus dem Anhang A Punkt A6 zu entnehmen.

7.4 Der Antriebsstopp

In der Abbildung 7-15 wird die Montage der Endschalter dargestellt. Die Endschalter (2) sind im Inneren des Grundprofils geschützt und in T-Nuten mit Klemmschrauben (3) befestigt, der negative Endschalter an der Motorseite, der positive Endschalter dem gegenüber. Die Endschalterkabel sind in der Nut mit einem Kunststoffprofil (1) abgedeckt. Die Kabelenden werden an der Frontplatte über eine zugentlastete Kabelverschraubung (5) nach außen geführt. Die Schaltpunkte der Endschalter sind so eingestellt, dass der Weg des Laufwagens (4) bis in die jeweilige Endlage dem ¹/₂ Hub ausgehend von der Lineartischmitte entspricht. Die von Berger Lahr angegebenen technischen Daten für den induktiven Nährungsschalter als Schließer (Endschalter) sind aus dem Anhang A Punkt A7 zu entnehmen.³²

³¹ Vgl.: Berger Lahr, Katalog Motoren für Twin Line, S. 7 32 Vgl.: Berger Lahr, Technische Dokumentation, S. 24

Abb. 7-15 Die Montagedarstellung des Endschalters

7.5 Die Steuerungseinheit

Die Ansteuerung des 3-Phasen-Schrittmotores und der End- bzw. Nährungsschalter erfolgt über die Twin-Line Positioniersteuerung TLC 511F (Abbildung 7-16). Da beide Lineartische, die Nährungsschalter und die dazugehörigen Schrittmotoren von Berger Lahr sind, liegt es nahe, deren Positioniersteuerung einzusetzen. Auch Goniometer und die dazugehörigen integrierten Endschalter werden über diese Positioniersteuerung angesteuert. Für jeden Schrittmotor wird eine Positioniersteuerung verwendet, die über CAN-Bus angesteuert wird.

Abb. 7-16 Die Positioniersteuerung TLC 511F

1.) Die besonderen Merkmale der Positioniersteuerung TLC 511F:

a) Konstruktionsmerkmale:

- kleine, kompakte Baugröße
- Stromversorgung der Leistungselektronik direkt vom Netz ohne Trafo
- integrierter Netzfilter Klasse A (Industrieumgebung), Kühlkörper und Lüfter
- Geräteaufhängungen im Gehäuse integriert
- alle elektronischen Anschlüsse von vorne zugänglich
- Schirmanschluß und Zugentlastung direkt am Gerät

b) Funktion- und Wirtschaftlichkeitsmerkmale:

- bedienerfreundlich
- Mehrsprachigkeit der Dokumentation und Bediengeräte
- geringer Platzbedarf

c) Individuelle Konfiguration der Schnittstellen:

- Geräteparameter und Komandos werden über CAN-Bus übertragen³³

7.5.1 Die elektrische Installation des TLC 511F

In der Abbildung 7-17 ist eine Geräteübersicht der Positioniersteuerung TLC 511F mit CAN-Bus-Ansteuerung dargestellt. In den folgenden Kapiteln (7.5.1.1 bis 7.5.1.4) werden Netzanschluß, Motoranschluß, 24V-Versorgungsspannung und der CAN-Bus Anschluß beschrieben.

Abb. 7-17 Die Geräteübersicht der Positioniersteuerung TLC 511F

7.5.1.1 Der Netzanschluß

Der Netzanschluß für die Positioniersteuerung wird in der Abbildung 7-18 gezeigt. Am Netzanschluß wird die Versorgungsspannung für die Endstufe angeschlossen. Die Stromversorgung für Regelung und Lüfteransteuerung muss über eine externe 24V_{DC}–Stromversorgung (Kapitel 7.5.1.3) bereitgestellt werden.

Anschlußbelegung:

- -Die Netzleitung beim Einphasen-Gerät ist an die Schraubklemmen PE, N und L angeschlossen.
- Das Drehmoment der Klemmschrauben beträgt 0,4Nm bis 0,5Nm.

Abb. 7-18 Die Netzanschlußbelegung

7.5.1.2 Der Motoranschluß

Über den Dreiphasen-Anschluß liefert die Positioniersteuerung TLC 511F den Strom für den 3-Phasen-Schrittmotor. Der Motoranschluß ist kurzschlußfest und wird bei Endstufenfreigabe auf Erdschluß geprüft.

Anschlußbelegung für die Motoren an der Positioniersteuerung:

Die Motorleitungen und Schutzleiter müssen an die Klemmen U, V, W und PE angeschlossen werden (Abbildung 7-19). Die Kabelbelegung (Tabelle 7-3) muss motorund geräteseitig übereinstimmen.

Abb. 7-19 Der Motoranschluß an die Positioniersteuerung TLC 511F

Die fernsteuerbare Positioniereinheit

Klemme	Anschluß	Farbe	
U	Motorleitung	Braun (bn)	
V	Motorleitung	Blau (bl)	
W	Motorleitung	Schwarz (bk)	
PE	Schutzleiter (Beilauflitze der Schirmung)	-	

Tab. 7-3 Die Anschlußbelegung für den Motor an die Positioniersteuerung

7.5.1.3 Der Anschluß der 24V-Versorgungsspannung

Für die End- bzw. Nährungsschalter sowie für die Lüfteransteuerung wird eine 24V Spannung benötigt. Daher muss an die Positioniersteuerung TLC 511F ein externes Netzteil angeschlossen werden. Da alle drei Positioniersteuerungen eine externe Versorgungsspannung von 3 x 2,5A benötigen, wurde ein Netzteil mit 10A gewählt. Das hier eingesetzte Netzteil ist von der Firma Conrad. In der folgenden Abbildung 7-20 ist die 24V-Versorgung vom Netzteil zur Signal-Schnittstelle dargestellt. Die dazugehörige PIN-Belegung wird in der Tabelle 7-4 aufgelistet.

Anschluß des externen 24V Netzteil:

Abb. 7-20 Die 24V-Versorgung vom Netzteil zur Signal-Schnittstelle

Pin-Belegung des Netzteils:

PIN	Signal	aktiv	Bedeutung	
31	24VDC	-	$24V_{DC}$ – Versorgungsspannung, intern verbunden mit PIN 32	-
32	24VDC	-	24V _{DC} – Versorgungsspannung	-
33	24VGND	-	GND für $24V_{DC}$ – Spannung, intern verbunden mit PIN 34 und >PIN 16	-
34	24VGND	-	GND für 24V _{DC} – Spannung	-

Tab. 7-4 Die Pin-Belegung des Netzteils

Der zweite 24V_{DC}– und GND-Anschluß wird dann als 24V-Ausgang für die End- bzw. Nährungsschalter und für die Lüfteransteuerung verwendet.

7.5.1.4 Der CAN-Bus Anschluß

Für den Anschluß an ein CAN-Bus Netzwerk ist die Positioniersteuerung TLC 511F auf dem Steckplatz M4 mit dem Modul CAN-C ausgerüstet (Abbildung 7-17). Das Modul CAN-C ist mit einem Sub-D-Stecker und einer Sub-D-Buchse, beide 9 polig und mit UNC-Verschraubung ausgestattet (Abbildung 7-21). Die Pinbelegung in Tabelle 7-5 ist für beide Schnittstellenanschlüsse identisch.

Pin-Belegung der Sub-D-Stecker und Buchse:

Abb. 7-21 Die Darstellung des Sub-D-Steckers und der Sub-D-Buchse

Die fernsteuerbare Positioniereinheit

Pin	Signal	Farbe	Paar	Bedeutung	E/A
1	-	-	1	nicht belegt	-
6	GND	grün	1	Masse	-
2	CAN_LOW	weiß	2	Datenleitung, invertiert	E/A
7	CAN_HIGH	braun	2	Datenleitung	E/A
3	GND	grau	3	Masse	-
8	-	Rosa	3	nicht belegt	-
4	-	-	-	nicht belegt	-
9	-	-	-	nicht belegt	-
5	-	-	-	nicht belegt	-

Tab. 7-5 Die Pin-Belegung des Sub-D-Steckers/Buchse

Kabelspezifikation:

- geschirmtes Kabel
- Mindestquerschnitt der Signaladern 0,14mm²
- Twisted-pair-Leistungen
- beidseitige Erdung des Schirms

LED-Anzeige am Gerät:

Die LED auf dem Modul CAN-C leuchtet ca. 2 Sekunden, wenn Feldbusdaten korrekt empfangen wurden.

7.5.2 Die technischen Daten der Positioniersteuerung TLC 511F

Die von Berger Lahr angegebenen technischen Daten der Positioniersteuerung TLC 511F sind aus dem Anhang A Punkt A8 zu entnehmen.

8. Die Monitor-Box für den Synchrotronlicht-Monitor

In der Abbildung 8-1 wird der, im Beschleunigertunnel HERA, eingebaute Synchrotronlicht-Monitor durch eine 3D-Grafik illustriert. In den folgenden Kapiteln 8.1 und 8.2 wird der Zusammenbau sowie die Aufhängung der Monitor-Box im Beschleunigertunnel HERA technisch beschrieben.

Abb. 8-1Die Darstellung des Tunnelquerschnitts mit eingebauter Monitor-Box

8.1 Die Monitor-Box

Die Monitor-Box besteht im Wesentlichen aus zwei Elementen. Zum Einem aus der Rahmenkonstruktion, indem das gesamte Meßsystem integriert ist, zum Anderen aus der Neutronenabschirmung. In den folgenden Unterkapiteln 8.1.1 bis 8.1.3 wird die Montage der Rahmenkonstruktion, der Neutronenabschirmung und der beiden Öffnungsklappen technisch beschrieben.

8.1.1 Die Rahmenkonstruktion

Die zusammengesetzte Rahmenkonstruktion besteht aus 40x40mm Aluminium Montageprofilen, schwarz eloxiert, welche von der Firma Rose und Krieger bezogen wurden. Befestigt werden die einzelnen Profile mit Spannbügelverbindungen und Knotenwinkeln. Die wesentlichen Vorteile des Montageprofils liegen darin, dass die Form des Profils eine hohe Systemsteifigkeit besitzt und schließlich durch die montagefreundlichen Befestigungselemente und der Knotenwinkel auszeichnet. In der Abbildung 8-2 wird die komplette Rahmenkonstruktion in einer 3D-Grafik dargestellt ebenso die Montage der Spannbügelverbindung und der Knotenwinkel.

Abb. 8-2 Die Rahmenkonstruktion

8.1.2 Befestigung der Neutronenabschirmung an die Rahmenkonstruktion

Der Grund für den Einsatz der Neutronenabschirmung für den Synchrotronlicht-Monitor wurde bereits im Kapitel 2 ausgeführt. In diesem Abschnitt wird im Wesentlichen auf die Verbindung zwischen der Abschirmung und dem Montageprofil eingegangen. Die Neutronenabschirmung besteht aus 60mm dicken Tetraboroxid-Platten von der Firma Terbrack Kunststoff GmbH. Die Abschirmung setzt sich aus sieben Einzelelementen zusammen: aus zwei Seitenplatten (3_04_5510/A.031/2.7 und 3_04_5510/A.033/2.7), aus einer Rückwand (3_04_5510/A.030 /2.7), einer Unterplatte und einer Oberplatte (2_04_5510/A.034/2.7 und 3_04_5510/A.032/2.7) und aus den zwei Elementen für die Öffnungsklappen (Kapitel 8.1.3).

Die Unterplatte besitzt, neben den Durchgangsbohrungen für die Befestigungsschrauben, zwei ausgefräste Durchbrüche für die Befestigungsblenden der elektrischen Komponenten sowie eine weitere Bohrung für den Strahldurchgang. An der Unterseite der Monitor-Box wird noch am Strahldurchgang ein Flanschring (4_04_ 5510/A.014/2.7) angeschraubt. Dieser Flanschring dient als Befestigunghilfe für einen lichtundurchlässigen, flexiblen Schlauch, der sich zwischen dem Emittanz-Monitor und dem Synchrotronlicht-Monitor befindet.

Da die Tetraboroxid-Platten in der Farbe natur geliefert wurden sind, mußten nachträglich an der Innenseite jeder Tetraboroxid-Platte eine schwarz eloxierte Aluminiumplatte mittels Schrauben, als Schutz vor Reflexionen, aufgebracht werden.³⁴

Befestigt werden die Tetraboroxid-Platte mit Hilfe von Nutesteinen, die in der Nut des Montageprofils ausgerichtet und durch Gewindestifte fixiert werden. Mittels Zylinderschrauben und durch die Hilfe der fixierten Nutensteine werden die Platten an dem Montageprofil angezogen und bilden so eine stabile Konstruktion. Durch die Neutronenabschirmung hat die Monitor-Box Abmaße von 700x700x1200mm (HxBxL). In der Abbildung 8-3 wird die fertig gestellte Monitor-Box gezeigt.

³⁴ Die nachträglich angebrachten Aluminium-Platte sind in Anhang B: Technische Zeichnungen / Inhalt / "zusätzliche technische Zeichnungen" zu finden.

Abb. 8-3 Die Monitor-Box

8.1.3 Die Öffnungsklappen der Monitor-Box

Damit der Synchrotronlicht-Monitor für Reparaturarbeiten und Wartungsarbeiten oder an Servicetagen zugänglich ist, wurde die Monitor-Box mit zwei Öffnungsklappen (4 04 5510/A.029/2.7 und 4 04 5510/A.028/2.7) versehen (Abbildung 8-3). Ziel war es, dass die Öffnungsklappen im geöffneten Zustand eine 135° Stellung beziehen und diese Stellung halten. Da jede Öffnungsklappe ca. 35kg wiegt, wurden an jeder Öffnungsklappe zwei Gasdruckfedern der Firma Unimatic GmbH eingesetzt. Mit den Angaben der gewünschten Befestigungspunkte und des Drehpunktes der Öffnungsklappen an der Monitor-Box wurde die Firma Unimatic GmbH beauftragt, die exakten Befestigungspunkte zu berechnet, um danach die Größe der Gasdruckfedern zu bestimmen. Das Verhalten bzw. der Kraftaufwand beim Öffnen sowie beim Schließen, die Größe der Gasdruckfedern und die Befestigungspunkte der Öffnungsklappen sind dem Anhang A unter den Punkt A9 zu entnehmen. Nach der Auswahl der Gasdruckfedern und die Angaben der exakten Befestigungspunkten wurden die Federn auf der einen Seite durch einen Halter (4_04_5510/A.039/2.7) an das Montageprofil und mit einem weiteren Halter (4 04 5510/A.035/2.7) an der Öffnungsklappe durch Zylinderschrauben befestigt.

In der Abbildung 8-4 wird die Anordnung und die Befestigung der Gasdruckfedern an der originalen Monitor-Box dargestellt.

Abb. 8-4 Die Darstellung der Befestigung für die Gasdruckfedern

8.2 Der Einbau der Monitor-Box im Beschleunigertunnel HERA

In der Abbildung 8-5 wird an Hand einer 3D-Grafik die Aufhängevorrichtung für die Monitor-Box des Synchrotronlicht-Monitors im Beschleunigertunnel HERA dargestellt.

Abb. 8-5 Aufhängevorrichtung für die Monitor-Box

Der Einbau und die Aufhängung der Monitor-Box über dem vorhandenen Emittanz-Monitor im Beschleunigertunnel HERA ist in der Abbildung 8-1 grafisch dargestellt. Sämtliche statische Berechnungen für die Konstruktion der Aufhängung des Synchrotronlicht-Monitors sowie die Auswahl der Träger und Befestigungselemente wurden von Statikern ermittelt.

In der Abbildung 8-6 ist die Anordnung und die Befestigungen der zusätzlichen Doppel-T-Träger an die vorhandene Laufkatze zu sehen und anschließend erklärt.

Abb. 8-6 Befestigungsanordnung der zusätzlichen Doppel-T-Träger

Da die vorhandene Laufkatze genau über den Protonenstrahlrohr verläuft (Abbildung 8-1) musste eine zusätzliche Trägerkonstruktion angebracht werden, die für eine exakte Positionierung der Monitor-Box über den Emittanz-Monitor sorgt. An den vorhandenen Halteträgern wurde ein zusätzlicher T-Träger parallel zum Führungsträger der vorhandenen Laufkatze positioniert und mit LINDAPTER-Klemmen befestigt. Nun wurden mit Hilfe des Führungsträgers und den dazu parallel montierten Träger zwei zusätzliche Unterzüge als Doppel T-Träger, ebenfalls mittels LINDAPER-Klemmen befestigt.

An den beiden zusätzlichen montierten Träger wurden an dem Einen ein und an dem Anderen zwei Halter (Abbildung 8-6) für die drei Verbindungsstangen befestigt. In der Abbildung 8-7 ist die Montage und die Anordnung der drei Verbindungsstangen an die Trägerkonstruktion dargestellt. Die drei Stangen wurden mit den Haltern angeschraubt. Damit sich die Stellung der Monitor-Box bei Erschütterungen nicht verändert, wurden die drei Verbindungsstangen mit Hilfe einer zusätzlichen Verstrebung miteinander verschraubt, dies bewirkt eine starre Aufhängung.

Abb. 8-7 Die Befestigungsanordnung der drei Verbindungsstangen

In der Abbildung 8-8 wird der geschweißte Halte-Rahmen, in dem die Monitor-Box eingeschoben wird, veranschaulicht. Der Halte-Rahmen wurde so konstruiert, dass sich die Schweißkonstruktion bei einer Last von ca. 800kg, die von dem Synchrotronlicht-Monitor ausgeht, nicht verformt. Bevor der Halte-Rahmen mit den Ver-bindungsstangen durch Spannschlösser (Abbildung 8-8) verbunden und ausgerichtet wurde, wurde die Monitor-Box ohne Abbildungsoptik und ohne die fernsteuerbare Positioniereinheit in den Halte-Rahmen eingeschoben. Die Monitor-Box und der Rahmen sind nicht starr miteinander verbunden. Damit der Rahmen mit den Verbindungsstangen verbunden werden kann, wurden auf der Monitor-Box drei Anschlagpunkte verschraubt (Abbildung 8-8), die als Befestigungspunkte für einen Flaschenzug dienen. Die Monitor-Box mit dem Halte-Rahmen wurden zur Einbaustelle in den Beschleunigertunnel transportiert und über einen Flaschenzug an die gewünschte Position angehoben. Dann wurde der Halte-Rahmen durch Spannschösser mit den Verbindungsstangen verbunden. Mit Hilfe der Spannschlösser wurde der Abstand zwischen der Monitor-Box und dem Emittanz-Monitor eingestellt.

Abb. 8-8 Der Halte-Rahmen für die Monitor-Box

9. Die Schematische Darstellung der Verdrahtung

In der Abbildung 9-1 sind die Komponenten, die in den zuvor erwähnten Kapiteln 6 bis 8 beschrieben wurden, schematisch verknüpft ausgeführt. Es soll nun in diesem Kapitel besonders auf die elektrische Ansteuerung des Synchrotronlicht-Monitors zur Injektionsoptimierung eingegangen werden.

Zuerst sollen alle elektrischen Komponenten ihre benötigte Spannung erhalten. Dieser Befehl wird von einem Server-PC über CAN-Bus an die CPU weitergeleitet. Die CPU schaltet alle Relais, wodurch die elektrischen Komponenten mit ihrer benötigten Spannung versorgt werden. Darauf hin bezieht der Klappspiegel (Kapitel 7.1.1) seine neue Stellung und lenkt den Strahl von dem Emittanz-Monitor in den Synchrotronlicht-Monitor.

Beim erstmaligen Benutzen des Synchrotronlicht-Monitors muss mit der Hilfe des Photomultipliers (Kapitel 6.2.3) sichergestellt werden, dass sich der Strahl exakt auf der optischen Achse befindet. Der Photomultplier bekommt seine Hochspannungsversorgung aus dem Messraum außerhalb des Beschleunigertunnels in dem auch der Server-PC steht. Das empfangende Lichtsignal wird vom Photomuliplier elektrisch an einen Oszilloskopen weitergeleitet, an dem es abgelesen werden kann. Nachdem sichergestellt ist, dass sich der Strahl auf der optischen Achse befindet, können mittels der Abbildungsoptik (Kapitel 6.2.1 und 6.2.2) die gewünschten Strahlprofile (horizontal und vertikal) aufgenommen werden. Die mit der Zeilenkamera (Kapitel 6.3) einzeln aufgenommenen Bilder werden über LWL (Kapitel 6.3.1) an den Server-PC weitergeleitet.

Das Goniometer (Kapitel 7.1.2) sowie die beiden Lineareinheiten (Kapitel 7.2) werden über die Positioniersteuerungen (Kapitel 7.5) angefahren. Die benötigten Kommandos dafür erhalten sie ebenfalls über CAN-Bus. Da es nicht Ziel dieser Diplomarbeit ist, ein Programm zur Bedienung der Positioniereinheiten zu schreiben, soll nicht näher auf die Kommandos eingegangen werden.

Die erwähnten Relais, Positioniersteuerungen, Wandler sowie die Netzgeräte werden in verschiedenen 19" Einschüben platziert und in einem 19" Rack untergebracht. Das Rack wird in der Nähe des Synchrotronlicht-Monitors in einem abgeschirmten Elektronikgraben (Abbildung 8-1) vor Strahlung geschützt unteregebracht. Der Datenaustausch zwischen den Beschleuniger-Kontrollraum und dem Server-PC findet über Ethernet statt.

Abb. 9-1 Die schematische Darstellung der Verdrahtung

10. Die Schlußbetrachtung und der Ausblick

In diesem letzten Abschnitt sollen die Resultate der Diplomarbeit, zum Aufbau und Test des Synchrotronlicht-Monitors zur Injektionsoptimerung für HERAe, zusammengefaßt werden. Nachdem durch Konstruktionsmethodik die geeigneten Komponenten zur Erfüllung der Gesamtfunktion ausgewählt wurden, konnte das optische Abbildungssystem mittels Laborversuche dimensioniert und anschließend konstruktiv umgesetzt werden. Desweiteren wurde eine fernsteuerbare Positioniereinheit ausgewählt und in das Gesamtsystem integriert. Die Monitor-Box wurde an der geforderten Position (HERA-West-rechts 227m) im Beschleunigertunnel HERA platziert und montiert. Die gesamten elektrischen Geräte für die Zeilenkamera und für die Positioniereinheit wurden durch Hilfe von 19"-Einschüben in einem 19"-Rack modular eingesetzt.

Da Einbauten im Beschleunigertunnel von Wartungstagen abhängig sind, konnte zuerst nur die Monitor-Box befestigt werden. Als Nächstes wäre das Abbildungssystem, die fernsteuerbare Positioniereinheit und schließlich das 19"- Rack zu installieren.

Bevor aber das optische Abbildungssytem, die fernsteuerbare Positioniereinheit und das 19"-Rack in den Beschleunigertunnel eingesetzt werden können, wird vorerst im Labor ein Gesamtfunktionstest durchgeführt und gegebenenfalls notwendige Korrekturen vorgenommen. Anschließend kann das Gesamtsystem in die Monitor-Box eingesetzt, ausgerichtet und montiert werden. Das 19"-Rack wird dann, vor Strahlung geschützt, in einem abgeschirmten Elektronikgraben untergebracht.

Bis die ersten Strahlprofil-Bilder aufgenommen werden können, muss zum Einen ein Programm für die Ansteuerung der fernsteuerbaren Positioniereinheit geschrieben und zum Anderen das Grundkonzept des Trigger-Systems realisiert werden. Die Erstellung eines Programms für die fernsteuerbare Positioniereinheit ist eine technische Voraussetzung zur Datennahme mit dem Synchrotronlicht-Monitor. An der Programmerstellung wird bereits gearbeitet
Durch die Inbetriebnahme des Synchrotronlicht-Monitors ist eine Reduzierung der Teilchenverluste und eine Verkürzung der Füllzeit von HERAe^{+/-} bis zu einen Faktor 2 garantiert.

Eine Besonderheit wird die Neutronenabschirmung des Synchrotronlicht-Monitors sein. Vorausgesetzt, es werden gute Ergebnisse mit dem Tetraboroxid erzielt (das heißt, das das Meßsystem geringeren Belastungen durch Untergrundstarhlung ausgesetzt wird) ist es möglich, in der Zukunft bei PETRAIII und bei dem zukünftigen Beschleuniger XFEL (Freie-Elektronen-Laser) teurere Kamerasysteme mit Bildverstärker einzusetzen, was wiederum zu einem geringeren Arbeitsaufwand führt.

IV. Literaturverzeichnis

Berger Lahr,	"Katalog Lineartische", Juli 2004
Berger Lahr,	"Katalog Motoren für Twin-Line", November 2001
Berger Lahr,	"Technische Dokumentation", Dezember 2003
Berger Lahr,	"Katalog Positioniersteuerungen für Twin Line", Juni 2003
Hain Wladimir,	"Neutronenabschirmung in HERA", Juli 1980
Hofmann A.,	"Theory of Synchrotron Radiation, 38, SSRL ACD-Note", 1986
Jackson J.D.,	"Classical Electrodynamics, Wiley", New York 1975
Kube G.,	"Aufbau und Test eines Synchrotronlicht-Monitors zur Injektionsoptimierung für HERAe", Juli 2004
Kube G.,	"Strahlungsintensität am Betatron-Mismatch Monitor für HERAe", März 2004
Wille K.,	"Physik der Teilchenbeschleuniger und Synchrotron- strahlungsquellen", 1992
Wittenburg K., Fischer R.,	"Synchrotronstrahlungs-Profilmonitor in HERAe", Juni 1998

V. Internetverzeichnis

http://www.desy.de/html/ueberdesy/ueber1.html

http://www.desy.de/html/forschung/forschung.html

http://www.desy.de/html/ueberdesy/desy_im_ueberblick.html

http://www.zw-jena.de/energie/schutz.html

VI. Erklärung der eigenständigen Arbeit

Hiermit versichere ich, dass ich die Arbeit ohne unerlaubte fremde Hilfe selbstständig verfaßt und nur die angegebenen Quellen benutzt habe.

Ort,	Datum,	Unterschrift

VII. Anhang A: Technische Datenblätter

Inhalt:

- A1: Die technischen Daten des Photomultipliers TUBE R2496
- A2: Die technischen Daten der Zeilenkamera AviivA M2 CL
- A3: Die technischen Daten der Framegrabber Karte
- A4: Die technischen Daten des 24-Bit-Wandlers von ARVOO
- A5: Die technischen Daten von dem Lineartisch LT-100
- A6: Die technischen Daten des 3-Phasen-Schrittmotors VRDM 368
- A7: Die technischen Daten des Antriebsstopps
- A8: Die technischen Daten der Positioniersteuerung TLC 511F
- A9: Die technischen Daten der Gasdruckfedern von Unimatic GmbH

A1: Die technischen Daten des Photomultipliers TUBE R2496

PHOTOMULTIPLIER TUBE R2496

For Positron CT Scanner Using BaF₂ Scintillator 10mm (3/8 Inch) Diameter, 8-Stage, Head-On, Bialkali Photocathode

FEATURES

Coincidence Resolving Time	
with BaF2-BaF2 ^{/22} Na	0.45ns
Fast Time Response	
Transit Time Spread (FWHM)	0.6ns
Quantum Efficiency at 225nm	18%

GENERAL

	Parameter	Description/Value	Unit
Spectral Response		160 to 650	nm
Wavelength of Maximun	n Response	420	nm
Dhaterial Material		Bialkali	_
Friotocathode	Minimum Useful Area	8	mm dia.
Window Material		Fused silica	-
Dynode	Structure	Linear focused	
	Number of Stages	8	
Direct Interelectrode	Anode to Last Dynode	0.7	pF
Capacitances	Anode to All Other Electrodes	2.0	pF
Base	2	11-pin glass base	
Weight		Approx. 5	g
Suitable Socket		E678-11N (supplied)	-

MAXIMUM RATINGS (Absolute Maximum Values)

	Parameter	Value	Unit
Supply Voltage	Between Anode and Cathode	1500	Vdc
Average Anode Curre	nt	0.03	mA
Ambient Temperature		-80 to +50	°C

CHARACTERISTICS (at 25°C)

	Min.	Тур.	Max.	Unit	
	Luminous (2856K)	60	95		μA/Im
Cathode Sensitivity	Radiant at 420nm		76		mA/W
une dependente con une dependente state et	Blue		9.5		μA/Im-b
Anode Sensitivity	Luminous (2856K)	30	100	—	A/Im
	Radiant at 420nm		8.0 × 10 ⁴	_	A/W
Gain			1.1 × 10 ⁶		
Anode Dark Current (after 30 min. storage in darkness)			2	50	nA
Time Besponse	Anode Pulse Rise Time	<u> </u>	0.7	_	ns
Time Response	Electron Transit Time	-	9.0		ns

VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrodes	к		Dy1	D	y2	D	уЗ	Dy	4	Dy	5	Dy	/6	D	y7	Dy	/8	F	2
Distribution Ra	atio	3	1.	5	1.	.5			1		1		1	l			1		
Supply Voltac	e. 125	inv	dc k	· C	ath	ahe	Dv	· Dvr	od	e F	· Δ	hor	0						

Supply Voltage: 1250Vdc, K: Cathode, Dy: Dynode, P: Anode

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. © 1998 Hamamatsu Photonics K.K.

A1: Die technischen Daten des Photomultipliers TUBE R2496

PHOTOMULTIPLIER TUBE R2496

Figure 1: Typical Spectral Response

Figure 2: Typical Gain Characteristics

Figure 3: Dimensional Outline and Basing Diagram (Unit: mm)

φ9.5

A2: Die technischen Daten der Zeilenkamera AviivA M2 CL

Typical Performances

Parameter		Va	lue		Unit
Sensor Characteristics at Maxi	mum Pixel Rate				
Resolution	512	1024	2048	4096	pixels
Pixel size (square)	14	14 10	14 10	- 10	μm μm
Max Line rate	Line rate 98			14	kHz
Anti blooming		x	150		-
Radiometric Performances (ma	ximum Pixel Rate, Ta	amb = 25°C)			
Output format		12 (al	so configurable in 8	l or 10)	bit
c stral range			250 - 1100		nm
Linearity			< 1		%
Gain range (step of 0.047 dB)		Gmin 0	Gnom 18	Gmax 30	dB
Peak response ⁽¹⁾⁽²⁾ with 14 μ m pi 10 μ m pitch	130 50	1040 400	4180 1600	LSB/(nJ/cm ²) LSB/(nJ/cm ²)	
SNR Effective bit		67.4 11.2	49 8.2	37 6.2	dB bit
Input RMS Noise with 14 μ m pitcl 10 μ m pitch	h		pJ/cm ² pJ/cm ²		
PRNU (Pixel Response Non Unife	ormity)		%		
Mechanical and Electrical Inter	face				d
Size (w x h x l)			56 x 60 x 39.4		mm
Lens mount			-		
Sensor alignment (See "Sensor Alignment" on page	• 14)	$\Delta x, y = \pm i$	µm °		
/er supply		[v		
Power dissipation			< 7		w
Operating temperature ⁽³⁾		O te	°C		
Storage temperature		-40	to 75 (non condens	sing)	°C
Spectral Response	Belative response (%) %001 (%) %004 (%) %005 (%) %00	-pixel 10x10 μm	pixel 14x14 µn		

 Notes:
 1. LSB are given for 12-bit configuration

 2. nJ/cm² measured on the sensor
 3. Camera front face temperature

A2: Die technischen Daten der Zeilenkamera AviivA M2 CL

Mechanical Characteristics

Weight

The camera typical weight (without lens nor lens adapter) is 220 g/7.7 ounces (typical).

Dimensions

S The camera dimensions (without lens) are W = 56 mm, H = 60 mm, L = 39.4 mm.

Figure 8. Mechanical Box Drawing and Dimensions

Mechanical Mounting Reference The front panel mechanical part is designed to support the mounting of the camera. On this mechanical part, three surfaces are considered as mounting reference surface: i.e. the distance between these surfaces and the first active pixel are known very precisely (better than $\pm 50 \ \mu$ m).

Table 17	Mechanical	Mounting	Reference
Table 17.	Mechanica	wounting	rieference

Number of Pixels	512	1024	2048	4096
x with 14 μ m sensor (nm)	24.416	20.832	13.664	-
x with 10 μ m sensor (nm)	-	22.880	17.760	7.520

A3: Die technischen Daten der Framegrabber Karte

High Performance auf dem PCI-64 Bit/66 MHz-Bus

Die X64-CL-Serie ist eine Produktreihe von digitalen Frame Grabbern mit CameraLink-Schnittstelle von Coreco Imaging. Diese Karten erfassen zwei Kameras unabhängig voneinander im Base-Modus oder eine Kamera im Medium- oder Full-Modus. Die mögliche Datenbandbreite beträgt bis zu 528 MByte/s. Sowohl Farb- als auch Monochrom-Kameras mit Flächen- oder Zeilensensor werden unterstützt. Die X64-CL Serie ist vor allem für die Industrie entwickelt worden. Deshalb bietet sie Eigenschaften wie: Robustheit, garantierte Datensicherheit, lange Verfügbarkeit, höchste Performance und umfangreiche Schnittstellen für die Einbindung in die industrielle gebung.Damit eignet sich die X64-CL-Serie in allen industriellen

CameraLink-Applikationen, die eine hohe Übertragungsleistung und Datensicherheit benötigen, bei einem sehr attraktiven Preis-/Leistungsverhältnis.

Höchste Übertragungsraten mit dem 64 Bit/66 MHz-PCI-Bus Flaschenhals eines Bildverarbeitungs-System ist heute meist die maximale Übertragungsbandbreite, die bei modernen Systemen bei ca. 100 MByte/s im kontinuierlichen Betrieb liegt. Die Frame Grabber

Die technischen Highlights im Detail

- PCI-Frame Grabber zur Aufnahme digitaler Signale bis 64 Bit nach CameraLink-Standard (10TAP-Version mit 80 Bit möglich)
- ► Für Flächen- und Zeilenkameras
- nterstützt 2 Base-Kameras unabhängig voneinander
- Unterstützt 1 Medium- oder 1 Full-Kamera mit bis zu 10 Taps
- ► Übertragungsraten bis 528 MByte/s über PCI-Bus → 6487/66 /1//3
- PCI 2.2 64 Bit/66 MHz- oder 32 Bit/33 MHz-fähig, Slot-kompatibel für 5V und 3.3V sowie PCI-X
- ► Abtastrate programmierbar bis 50 MHz je Kanal
- Programmierbare Bildgrößen bis 256 k x 16 M (H/V) bzw. unendlich viele Zeilen für Zeilenkameras
- ► 32 bis optional 256 MByte Bildspeicher, linear
- Hardware-implementierter, selbstladender Scatter-Gather-DMA-Transfer bewirkt Datentransfer ohne CPU-Belastung
- Online-Sortierung von mehrfach getappten Kameras
- 2 unabhängige Trigger-Eingänge (TTL, RS422 oder optoisoliert)
- ► 2 Strobe-Ausgänge
- ► 12 digitale, intelligente I/Os (optional)
- 2 unabhängige Shaft-Encoder (z.B. zum Anschluss eines Inkrementalgebers)
- ► Interrupt-Unterstützung für verschiedene Ereignisse
- ▶ 8 Look-Up-Tabellen (LUT) mit je 64 kByte
- ► RS232-Schnittstelle zur direkten Ansteuerung einer Kamera pro CameraLink-Schnittstelle

der X64-CL-Serie ermöglichen durch die volle Unterstützung der 64 Bit/66 MHz-Spezifikation des PCI-Busses die 4fache Übertragungsbandbreite. Dabei arbeiten die Karten aber aus Kompatibilitätsgründen ebenfalls in einem PCI-Bus mit 32 Bit/33 MHz oder in einem PCI-X-Bus der entsprechend eingeschränkten Bandbreite.

- ► Spannungsversorgung für die Kamera 12V/5V 1,5A (optional)
- Garantierte Rückmeldung und Lokalisierung von Datenverlusten durch »trigger to image-reliability«
- Leistungsfähige Entwicklungs-Software für Windows NT/2000/XP
- ► Kompatibel zu Common Vision Blox

Konfigurationen des CameraLink-Standards

A4: Die technischen Daten des 24-Bit-Wandlers von ARVOO

optic*link*™

CL series

opticlink[™] CL Dual Base-24

Fiber interface

single mode multi-mode: 500 meter

single-mode: 10 kilometer (optional: up to about 40 to 60 kilometer) 4, full duplex

4x MT-RJ

4

CameraLink interface

Fiber type

Max fiber length

Fiber tranceiver Fiber connector #duplex fibers in link

CameraLink interface Pixel clock Pixel data

Video timing

Camera Control

Serial communication

#CameraLink connectors (MDR 26-pins)

RS-232 channel #RS-232 connectors (sub-D9)

Power connector

Dimensions (I x w x h) Supply voltage Typical power consumption Operating temperature Dual Base 24 (2x tap A, B, C) up to 66 MHz up to 24-bit dual channel 2x FVAL 2x LVAL 2x STROBE 2x DVAL 2x CC1 to CC4 2x SERTC 2x SERTFG

2

RS-232 interface

2, full duplex

2

General

4-pins subminiature round male connector Thomas & Betts: subminiature connector Triad '01' Binder: subminiature 'Circular Series 712'

160 x 105 x 44 mm

4.5 V to 5.5 V

9.5 W 0° C to 70° C

A4: Die technischen Daten des 24-Bit-Wandlers von ARVOO

Appendix A

1. Electrical specifications

Power requirements	Min.	Typical	Max.
Supply voltage, Vcc	4.5 V	5.0 V	5.5 V
Supply current	0.9 A	1.0 A	1.1 A
Power	4.0 W	5.0 W	6.0 W

2. Mechanical specifications

Measures 105x160x44 mm

Environmental	
Operating temperature	0° to 70° Celsius
Storage temperature	-40° to 85° Celsius
Non-Condensing relative humidity	less than 90%

Table 11

A5: Die technischen Daten von dem Lineartisch LT-100

Lineartisch LT-100					BE	RGE	R L	AHR
Techn	ische l	Daten	Fz.					
		Fr	Mz	Fx Mx		Maximal	e Last	12.8 kN
		Ľ	• Junior			Minimale Maximale	er Hub er Hub	30 mm 600 mm
	(Fz.	,	Maximale (Geschwin	digkeit 🗧	30 m/min.
		San Ste			La Color	M		
		Fü	hrung	ĸ	lugelgewi	ndetrieb	10	
E	[NI]	Statisch	Dynamisch	Durchmesser	[mm]	2	12	10
FZ +		11.300	12.800	Stat Traggabl	[IUUU	2 200	5	10
FZ -		7 400	8.400	Dvn Tranzahl		2.500	4.900	3 900
Mx	[Nm]	310	350	Max Antriebsmoment	[Nm]	0.7	1.7	3.3
Mv	[Nm]	470	530	Max. Drehzahl	[1/min]	0,1	3.000	0,0
Mz	[Nm]	310	350	Max. Knicklast	[N]		20.000	l.

Max. Vorschubskraft (positiv X+)	[N]	siehe Knicklast oben
Max. Vorschubskraft (negativ X-)	[N]	siehe Knicklast oben
Leerlaufdrehmoment	[Nm]	0,2
Gewicht bei 0 mm Hub, ohne Motoranbau	[kg]	2,4
Gewicht bei 0 mm Hub, gerader Motoranbau, ohne Motor	[kg]	2,8
Gewicht bei 0 mm Hub mit Riemenvorgelege, ohne Motor	[kg]	3,15
Gewicht pro 100 mm Hub	[kg]	0,85
Ix axiales Flächenträgheitsmoment des Achsprofils	[mm4]	111.842
ly axiales Flächenträgheitsmoment des Achsprofils	[mm4]	1.511.703

A5: Die technischen Daten von dem Lineartisch LT-100

Berechnung der Gesamtlänge des Lineartisches

Beispiel: Benötigt wird ein Lineartisch mit 70mm Hub. Formel: L = 205+ (Hub x 1,38532) → 205+ (70 x 1,38532) = 301,97 mm; Nachkommastellen abrunden → L = 301,0 mm

3-Phasen-Schrittmotoren

Encoder-Strichzahl (optional)

Technische Daten

Technische Da	ten						
		VRDM 368	VRDM 397	VRDM 3910	VRDM 3913	VRDM 31117	VRDM 31122
Max. Drehmo- ment	M _{max}	150 Ncm	200 Ncm	400 Ncm	600 Ncm	1200 Ncm	1650 Ncm
Halterroment	M _H	174 Ncm	226 Ncm	452 Ncm	678 Ncm	1392 Ncm	1914 Ncm
Rotorträgheits- moment	J _R	0,38 kgcm ²	1,1 kgcm ²	2,2 kgcm ²	3,3 kgcm ²	10,5 kgcm ²	16 kgcm ²
Max. Startfre- quenz	FAom	6 kHz	5,3 kHz	5,3 kHz	5,3 kHz	4,7 kHz	4,7 kHz
Nennstrom/Zu- leitung	lω	0,9 A	1,8 A	2,0 A	2,3 A	4,1 A	4,8 A
Widerstand/ Wicklung	Rω	25 Ω	6,5 Ω	5,8 Ω	6,5 Ω	1,8 Ω	1,9 Ω
Stromanstiegs- zeitkonstante	τ	4,6 ms	7 ms	9 ms	10 ms	22 ms	22 ms
Zulässige dyna- mische Wellen- belastung axial		8,4 N	60 N	60 N	60 N	60 N	60 N
Zulässige dyna- mische Wellen- belastung radial		50 N	100 N	100 N	110 N	300 N	300 N
Masse	G	1,1 kg	2,5 kg	3,1 kg	4,2 kg	8,0 kg	11 kg
				VRDM 3x			
Motorspannung			U	325 V			
Schrittzahl			z	200/400/500	/1000/2000/40	00/5000/10000	
Schrittwinkel je S	Schritt		а	1,8/0,9/0,72	0,36/0,18/0,09	9/0,072/0,036 °	

1000

Kennlinien

3-Phasen-Schrittmotoren

VRDM 3910 mit TLD 011

4 Start-Stopp-Kennlinie

VRDM 3913 mit TLD 011

Maßzeichnungen

3-Phasen-Schrittmotoren

VRDM 368

- 1 Encoderstecker
- 2 Motorstecker
- 3 Bremse
- 4 Bremsenstecker

Getriebeoptionen

Planetengetriebe PL 10 und PL 50

3-Phasen-Schrittmotoren

Getriebe PL 10 ... PL 115

Getriebedaten für alle Typen

Getriebeart	Einstufig geradeverzahntes Planetengetriebe
Nominelle Lagerle- bensdauer*	L _{10h} = 20000 h
Verdrehflankenspiel	< 12', bei PL 115 < 3'
Gehäusematerial	Aluminium
Oberfläche	Schwarz eloxiert
Wellenmaterial	C 45
Lagerung	Wälzlager
Abdichtung am Wel- lenaustritt	IP 54
Schmierung	Fettschmierung auf Lebens- dauer
Temperaturbereich	-20 °C bis +80 °C
* Wert in Betriebsstun	len bei einer 10%igen Ausfall-

* Wert in Betriebsstunden bei einer 10%igen Auslallwahrscheinlichkeit; 100% ED bei Dauerabtriebsmoment; Betriebsart S1 (Dauerbetrieb); Lagertemperatur = 30 °C

Die Getriebe PL 10 / 50 / 100 / 115 werden grundsätzlich am Motor montiert ausgeliefert. Die Bestellung erfolgt über den Typenschlüssel Motor.

Maßzeichnung Planetengetriebe PL 50 für 3-Phasen-Schrittmotoren Baugröße 90

- 5 Passfeder
- 6 Zentrierbohrung

Getriebe	Passfeder	Zentrierbohrung
PL 10	DIN 6885 A4 x 4 x 18	DIN 332 DS M4
PL 50	DIN 6885 A6 x 6 x 28	DIN 332 DS M6

A7: Die technischen Daten des Antriebsstopps

40 L		Öffner
20	60±5	Giller
		2.2
- 		
		- BU
14		5
		+24V
		
		b1
Aktive Flöche LED (Rot)	L	
Kenndaten		
Realschaltabstand sr	[mm]	$2.0 \pm 10\%^{1}$
Gesicherter Schaltabstand sa	[mm]	01.6 ¹⁾
Hysterese H	[% v. s _r]	≤15
Wiederholgenauigkeit R	[% v. s _r]	≤5
Umgebungstemperatur T _a	[°C]	-25+95
Temperaturdrift	[% v. s _r]	≤ 10
Schaltfrequenz f bei Ue	[Hz]	1000
Bereitschaftsverzug t _v	[ms]	≤ 10
Gebrauchskategorie		DC 13
Funktions-/Betriebsspannungs-Anzeige		
Pemessungshetrichesnennung II	(V)	24.00
Betriebssnannung U		24 DC
incl Restwelligkeit		1030 DC
Spannungsfall II. bei 1. stat /dyn	[/0 v. 0ej	≤ 15
Bemessungsisolationsspannung U	[V]	75 DC
Bemessungsfrequenz des Versorgungsnetzes	[Hz]	DC
Bemessungsbetriebsstrom l.	[mA]	150
Kleinster Betriebsstrom Im	[mA]	_
Kurzzeit-Strombelastbarkeit $I_k T = 20 \text{ ms}$	[A]/(Hz]	-/-
Leerlaufstrom I ₀ bei U _e bed./unbed.	[mA]	$\leq 10 / \leq 3$
Reststrom I _r	[µA]	≤ 10
Gegen sämtliche Vertauschungsmög. geschützt		\boxtimes
Verpolungssicher		\boxtimes
Bedingter Bemessungskurzschlussstrom	[A]	100
Ausgangswiderstand R _a	[kOhm]	33+D
zul. Lastkapazität	[µF]	≤ 0.5
	0.1 ** 0 1	
ESD/RFI/Burst/IV w	Scharfegrad	4/2/4/2
Emission Machanische Deten		Gr. 1, Kl. B
Gehäusewerkstoff		AT
Anzugsdrehmoment [Nm]		Al
Werkstoff der aktiven Fläche		POM
Anschlussart		Kabel HK-SO-Li12v11v-HF
Anzahl der Leiter x Leiterquerschnitt	[mm ²]	3x0.14
Schutzart		IP 67
Schutzklasse		
Verschmutzungsgrad		3
Gewicht	[g]	11+36 pro m Kabel
Schockbeanspruchung		Halbsinus. 30 gn, 11 ms
Schwingungsbeanspruchung		55 Hz, 1 mm Amplitude,
Demontone		3 x 30 Minuten

BemerkungenNach Beseitigung der Überlast ist Sensor wieder funktionsfähig. 1)Realschaltabstand s, bei Aluminium [mm] $0.9 \pm 10\%$ Gesicherter Schaltabstand sa bei Aluminium [mm] 0...07

A7: Die technischen Daten des Antriebsstopps

		Schließer
<u>⊨ 40 t</u>		
20	60±5	
710	verzinnt 10	2.2
		- BN Product
		- BK 88
		- BU + + + +
N4		5
	Г	∧ ^{br} • <u>+24v</u> +
		b1
Aktive Fläche LED (Rot)	L	``_0+ -
Kenndaten		
Realschaltabstand sr	[mm]	$2.0 \pm 10\%^{1}$
Gesicherter Schaltabstand sa	[mm]	01.6 ¹⁾
Hysterese H	[% v. s _r]	≤ 15
Wiederholgenauigkeit R	[% v. s _r]	≤5
Umgebungstemperatur T _a	[°C]	-25+70
Temperaturdrift	[% v. s _r]	≤ 10 1000
Schaltfrequenz f bei U _e	[HZ]	1000
Gebrauchskategorie	[ms]	≤ 10
Funktions-/Betriehssnannungs-Anzeige		
Elektrische Daten		
Bemessungsbetriebsspannung U.	[V]	24 DC
Betriebsspannung U _B	ivi	1030 DC
incl. Restwelligkeit	[% v. U.]	≤ 10
Spannungsfall U _d bei le stat./dyn.	เขา	≤3/-
Bemessungsisolationsspannung U _i	(v)	75 DC
Bemessungsfrequenz des Versorgungsnetzes	[Hz]	DC
Bemessungsbetriebsstrom le	[mA]	150
Kleinster Betriebsstrom Im	[mA]	-
Kurzzeit-Strombelastbarkeit $I_k T = 20 \text{ ms}$	[A]/(Hz]	-/-
Leerlaufstrom I_0 bei U_e bed./unbed.	[mA]	$\leq 10/\leq 3$
Reststrom I _r	[µA]	≤ 10 57
Gegen samtliche Vertauschungsmög, geschutzt		
Verpolungssicher Bedingter Remessungslaurzschlussstrom	[A]	
Ausgangswiderstand R	[A] [kOhm]	33+D
zul Lastkanazität	[uF]	<05
EMV	[[#1]]	20.0
ESD/RFI/Burst/IVW	Schärfegrad	4/2/4/2
Emission	8	Gr. 1, Kl. B
Mechanische Daten		
Gehäusewerkstoff		AI
Anzugsdrehmoment [Nm]		-
Werkstoff der aktiven Fläche		POM
Anschlussart		Kabel HK-SO-Li12y11y-HF
Anzahl der Leiter x Leiterquerschnitt	[mm²]	3x0.14
Schutzart		IP 6/
SCRUIZKIASSE		-
versenmutzungsgrau Gewicht	[a]	s 11+36 pro m Kabel
Schockbeansprichung	181	Halbsinus 30 on 11 me
Schwingungsbeanspruchung		55 Hz. 1 mm Amplitude
		3 x 30 Minuten
Bemerkungen		

 Bemerkungen
 w

 Nach Beseitigung der Überlast ist Sensor wieder funktionsfähig.
 *

 *)Realschaltabstand sr bei Aluminium [mm] 0.9 ± 10%; Gesicherter Schaltabstand sa bei Aluminium [mm] 0...0.7

Gewicht Geräteschutz	TLC511, TLC512 mit 3 Modulen Schutzart nach DIN EN 60529: 1991				
Abmessungen	18- 13-	TLC511	TLC512		
	Breite [mm]	108	108		
	Höhe (mm)	212,5	212,5		
	Tiefe [mm]	184,5	184,5	1	
	Frontbreite [mm]	105,5	105,5		
	Anschlußmaß [mm]	63	63		

Elektronische Daten

Positioniersteuerung

Netzanschluß

9	TLC511/TLC511P	TLC512/TLC512P
Netzspannung [V _{AC}]	1 x 230 -20%/+15%	1 x 230 -20%/+15%
nur bei TLC51xNF:	1 x 115 -20%/+15%	1 x 115 -20%/+15%
Netzfrequenz [Hz]	47 - 63	47 - 63
Stromaufnahme [A]	2 (230 V) 4 (115 V)	5 (230 V) 10 (115 V)
Einschaltstrom [A]	< 60	< 60
Leistungsfaktor cosø	> 0,6	> 0,6
Verlustleistung (W)	≤ 40	≤ 60
Netzausfallüberbrük- kung [ms]	< 5	< 5
Überspannungsfestig- keit (DIN EN 61800-3)	Zwischen den Phasen: 1 1 kV	l kV, Phasen nach Erde:
Ableitströme ¹⁾ [mA]	< 30	< 30
Sicherung, extern [A] / Charakteristik		
bei 230 V bei 115 V	10 C, K oder ähnliche 10 C, K oder ähnliche	10 C, K oder ähnliche 10 C, K oder ähnliche

Motoranschluß

9 2	TLC511/TLC511P	TLC512/TLC512P
Leistungsklasse ¹⁾ [kW]	0,35	0,75
Schaltfrequenz [kHz]	16	16
Nennstrom (Arms), Effektivwert	3	7
Maximale Drehzahl [U/min]	3000	3000
Kabellänge ²⁾ [m]	20	20
Kabelquerschnitt (mm ²)	1,5	1,5

Max. elektrische Wirkleistung des Geräts bei Nennstrom und 115 V _{AC} oder 230 V_{AC} Netzspannung
 Längere Motorkabellängen auf Anfrage

	6.223	
	Eingang Spannungsbereich Welligkeit	20 V bis 30 V < 2 V _{SS}
	Eingangsstrom (ohne Belastung d	ler Ausgänge) < 2,5 A
Signal - Schnittstelle	digitale Signaleingänge	verpolungssicher keine galvanische Trennung entprellt, Entprellzeit 0.7 bis 1.5 ms
	DC-Spannung U _{high} DC-Spannung U _{low} Strom bei 24 V	12 V bis 30 V(I ≥ 3 mA) ≤ 5V (I ≤ 0,5 mA) ≤ 7 mA
	digitale Signalausgänge	induktiv belastbar (150 mH/11 W) kurzschlußfest
	DC-Spannung Schaltstrom Spannungsabfall bei 400 mA	≤ 30 V ≤ 400 mA ≤ 1 V
	analoger Signaleingang Spannungsbereich Eingangswiderstand	+10 V bis -10 V 5 kΩ
UL 508C-Zulassung	Die Grenzwerte für die UL 508C-z "UL 508C-Zulassung" ab Seite 3-8	žulassung finden Sie im Kapitel 8.

Module

Encodermodul RS422-C	Signaleingänge (A, B, I)	RS422-kompatibel galvanisch mit 24VGND verbunden
	Eingangsfrequenz	≤ 400 kHz 1 600 000 Inc/s
	Ausgang Drehgeberversorgung (SENSE	5 V ± 5%, max. 300 mA sensegeregelt kurzschluß- und überlastsicher
Puls-/Richtungsmodul PULSE-C	Signaleingänge symmetrisch asymmetrisch Eingangswiderstand	RS422-spannungskompatibel 4,5 V bis 30 V galvanisch mit 24VGND verbunden 5 kΩ
	Eingangsfrequenzen: Schrittfrequenz (PULSE/PV, D Motorstromsteuerung (PWM)	IR/PR) ≤ 200 kHz 6 kHz bis 25 kHz
	Schrittzahl	200, 400, 500, 1000, 2000, 4000, 5000, 10000
	Signalausgänge (ACTIVE, FUNC Ausgangsspannung Ausgangsstrom, maximal	F_OUT) Open-Collector-Ausgänge kurzschlußfest ≤ 30 V ≤ 50 mA
Analogmodul IOM-C	digitale Signaleingänge en DC-Spannung U _{high} DC-Spannung U _{low} Strom bei 24 V	verpolungssicher keine galvanische Trennung tprellt, Entprellzeit 0,7 ms bis 1,5 ms 12 V bis 30 V(I ≥ 3 mA) ≤ 5V (I ≤ 0,5 mA) ≤ 7 mA
	digitale Signalausgänge	induktiv belastbar (50 mH) kurzschlußfest
	DC-Spannung Sperrstrom Spannungsabfall bei 50 mA	verpolungssicher 12 V bis 30 V ≤ 100 µA ≤ 2 V
	analoge Signaleingänge Spannungsbereich Eingangswiderstand	+10 V bis -10 V 50 kΩ
	analoge Signalausgänge	kurzschlußfest
	Spannungsbereich Ausgangsstrom Auflösung	+10 V bis -10 V max. 5 mA ≥ 3800 Stufen
Encodersimulationsmodul ESIM3-C	Signalausgänge (A, B)	RS422-spannungskompatibel galvanisch mit 24GND verbunden

Drehüberwachung RM-C	Signaleingänge (A, B)	RS422-Pegel galvanisch mit 24VGND verbunden	
	Eingangsfrequenzen:	≤400 kHz 1 600 00 Inc/s	
	Teilung des Drehgebers	1000 Striche	
	Ausgang Drehgeberversorgung (SE	NSE) 5 V ± 5%, ≤ 300 mA sensegeregelt kurzschluß- und überlastsicher	
Modul RS485-C	Signal-Eingänge/-Ausgänge	entsprechend RS485-Norm	
		galvanisch getrennt 4-Draht-Schnittstelle	
	Übertragungsraten	1200, 2400, 4800, 9600 19200, 38400 Baud	
Modul PBDP-C	Signal-Eingänge/-Ausgänge	entsprechend RS485-Norm galvanisch getrennt	
	Übertragungsrate	≤ 12 MBaud	
Modul CAN-C	Signal-Eingänge/-Ausgänge	Pegel nach ISO 11898 galvanisch getrennt	
	Übertragungsrate	≤ 1 MBaud	
Modul IBS-C	Signal-Eingänge/-Ausgänge	entsprechend INTERBUS-Spezifikation, Variante 1 Zweileiter-Fernbus	
	Übertragungsrate	500 kBaud	
	Bei Geräten mit Modul IBS-C sind die 24 VGND intern fest mit PE ver- bunden.		
Ausführung P optionale Haltebremsenansteuerung	Versorgungsspannung Eingar Eingangsstrom	20 V bis 30 V Eingangsstrom = 0,1 A + Bremsenstrom	
	Ausgang, Bremse Strom bei 24 V für 100 ms DC-Spannung	nicht kurzschlußfest max. 2,5 A 20 V bis 30 V	
	Bei Spannungsabsenkung Dauerstrom DC-Spannung	max. 1,25 A 9,5 V bis 15 V	

UL 508C-Zulassung

Die Positioniersteuerung TLC51x ist mit den folgenden Daten gemäß UL 508C zugelassen.

Netzanschluß

Gerät	Netzspannung [V]	Netzfrequenz [Hz]	Stromstärke [A]	Phasen
TLCX11	230 115	47-63	2 4	1
TLCX12	230 115	47-63	5 7.5	1

Motordaten

Gerät	Motorspan- nung [V]	Motorfrequenz [Hz]	Motorstrom [A]	Phasen
TLCX11	0-230	0-2500	3	3
TLCX12	0-230	0-2500	7	3

Zubehör • Haltebremsenansteuerung, TL HBC Versorgungsspannung 24 V

Zubehör für das Standardgerät

Haltebremsenansteuerung TL HBC	Versorgungsspannung, Eingang	20 V bis 30 V
	Eingangsstrom Eingangsstrom =	0,5 A + Bremsenstrom
	Ausgang, Bremse	
	DC-Spannung	20 V bis 30 V
	Strom bei 24 V für 100 ms	0.5 A bis 2.5 A
	Dauerstrom	0,5 A bis 1,25 A
	DC-Spannung mit Spannungsabsenkung	9,5 V bis 15 V
	Strom bei 12 V	0,5 A bis 2 A
	Sichere elektrische Trennung zwischen 24 V-E und Bremsenausgang.	ingang, Steuereingang

A9: Die technischen Daten der Gasdruckfedern von Unimatic GmbH

A9: Die technischen Daten der Gasdruckfedern von Unimatic GmbH

A Hub Stroke Course	B Ausgesch. Länge Extended length Longueur sortie	F ₁ - [N]	Bestell-Nr. RefNo. RéfNo.
60	205	500	084018
		600	084026
	205,5	700	084034
		800	094684
80	245	500	084093
		600	084107
	245,5	700	084115
		800	094692
100	285	500	084174
		600	084182
	285,5	700	084190
		800	094706
120	325	500	084247
		600	094714
	325,5	700	084263
		800	094722
140	365	400	084352
		500	084360
	and the second second	600	084379
	365,5	700	084387
		800	094749
160	405	100	084395
		150	094765
	1	200	084409
	1	250	094773
	- F	300	084417
	1	350	094781
	1	400	084425
		500	084476
		600	084484
	405,5	700	084492
	2	800	094757
180	445	100	084506
	1	150	094803
	1	200	084514
		250	094811
		300	084522
		350	094838

A Hub Stroke Course	B Ausgesch. Länge Extended length Longueur sortie	F ₁ - [N]	Bestell-Nr. RefNo. RéfNo.
180	445	400	086363
		500	084549
	F	600	084557
	445,5	700	084565
		800	094846
200	485	100	084573
		150	094854
		200	084581
		250	094862
		300	084603
		350	094870
	1 [400	084611
		500	084638
	I and the second se	600	084646
	485,5	700	084654
	1	800	094889
220	525	100	084662
		150	094897
	1	200	084670
		250	094900
		300	084689
		350	094919
	525,5	400	084697
		500	084700
		600	084719
		700	084727
		800	094927
250	585	100	084735
		150	094935
		200	084743
		250	094943
		300	084751
		350	094951
		400	084778
		500	084786
		600	084794
	585,5	700	084808
		800	094978

VIII. Anhang B: Technische Zeichnungen

Inhalt:

- 4 04 5510/A.001/2.7	Adapter-Platte 40x120 für Linos Drehtisch
- 4_04_5510/A.002/2.7	Adapter-Platte 25x120 für die Linos Säule
- 3_04_5510/A.008/2.7	Aluminium T-Profil 50x50x5 für Grundplatte 1
- 2_04_5510/A.009/2.7	Grundplatte 2 für LT-100 Hub90
- 4_04_5510/A.010/2.7	Adapter-Platte für LT-100 Hub 120
- 3_04_5510/A.011/2.7	Grundplatte 1 für LT-100 Hub 120
- 4_04_5510/A.014/2.7	Flanschring
- 4 04 5510/A.015/2.7	Adapter-Platte für den Goniometer
- 4 04 5510/A.016/2.7	Adapter-Platte für Achromat f100
- 4 04 5510/A.017/2.7	Adapter-Platte für Newport Rundspiegelhalter
- 4 04 5510/A.018/2.7	Stift für Newport Rundspiegelhalter
- 3_04_5510/A.019/2.7	Säule d = 25 für Photomultiplier
- 4_04_5510/A.020/2.7	Halter für Photomultiplier
- 4_04_5510/A.023/2.7	Stange für Linos Achromathalter
- 4_04_5510/A.028/2.7	Tetraboroxid -Klappe- linke Seite
- 4_04_5510/A.029/2.7	Tetraboroxid -Klappe- rechte Seite
- 3_04_5510/A.030/2.7	Tetraboroxid -hinten-
- 3_04_5510/A.031/2.7	Tetraboroxid -linke Seite-
- 3_04_5510/A.032/2.7	Tetraboroxid -oben-
- 3_04_5510/A.033/2.7	Tetraboroxid -rechte Seite-
- 2_04_5510/A.034/2.7	Tetraboroxid -unten-
- 4_04_5510/A.035/2.7	Befestigung I für Gasdruckfeder
- 4_04_5510/A.037/2.7	Adapter-Platte 50x60 für Linos Halter
- 4 04 5510/A.038/2.7	Adapter-Platte für LT-100 Hub 90
- 4_04_5510/A.039/2.7	Befestigung II für Gasdruckfeder

Zusätzliche technische Zeichnungen:

- 3 04 5510/A.003/2.7	Aluminium-Platte für Tetraboroxid -hinten-
- 3_04_5510/A.004/2.7	Aluminium-Platte für Tetraboroxid -links/rechts-
- 3_04_5510/A.005/2.7	Aluminium-Platte für Tetraboroxid -oben-
- 4_04_5510/A.006/2.7	Aluminium-Platte für Tetraboroxid -unten
- 4_04_5510/A.007/2.7	Aluminium-Platte für Tetraboroxid -Klappe links/rechts-