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Abstract

Smith–Purcell radiation is generated by a charged particle beam passing close to the surface of a diffraction grating.

Experimental investigations show a strong dependency of the emitted radiation intensity on the form of the grating

profile. This influence is expressed by the radiation factor which is a measure of the grating efficiency, in close analogy

to reflection coefficients of optical grating theories. The radiation factor depends on beam energy and observation

geometry. Up to now calculations for radiation factors exist for lamellar, sinusoidal and �echelette-type grating profiles.

In this paper, calculations of Smith–Purcell radiation factors for volume strip gratings which are separated by vacuum

gaps are presented. They are based on the modal expansion method and restricted to perfectly conducting grating

surfaces and to electron trajectories perpendicular to the grating grooves. An infinite system of coupled linear algebraic

equations for the scattered and the transmitted wave amplitudes is derived by imposing the continuity condition at the

open end of the grooves, and by the boundary conditions at the remaining part of the interface. Numerical results are

presented and discussed in view of using Smith–Purcell radiation for particle beam diagnostic purposes.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The development of the next generation high

quality electron beams presents an enormous

challenge for both the diagnostic measurement of

beam parameters and the accurate positioning and

control of these beams. The currently used moni-
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tors are based on a number of different physical
principles, and one technique is to use the radia-

tion that can be produced by the beam itself. In

this context nowadays beam diagnostics based on

optical transition radiation is widely used [1–4].

However, the transition radiation technique entails

the disadvantage of an interaction of the beam

with the target leading to either the destruction

of the high quality beam parameters or at high
beam currents even of the screen. Hence the

development of non-invasive, low cost, and com-

pact beam monitors is demanded. Monitors based

on synchrotron radiation, while non-invasive, are
ved.
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disadvantageous because they cannot be used in

linear beam geometries. Another approach rather

similar to the transition radiation technique is to

exploit the radiation characteristics of diffraction
radiation which is emitted when the electrons pass

close to an obstacle [5–9]. In recent publications

beam diagnostics based on resonant diffraction

radiation is proposed which originates from elec-

trons moving through an ideally conducting tilted

target which is made by strips separated by vac-

uum gaps [10,11].

A rather similar and also non-destructive ap-
proach is to use Smith–Purcell (SP) radiation as a

compact and inexpensive beam profile monitor.

The radiation is generated when the electron beam

passes a periodic structure like a diffraction grating

at a fixed distance close to the surface. The radi-

ation mechanism was predicted by Frank [12] and

observed in the visible spectral range for the first

time by Smith and Purcell [13] using a 250–300
keV electron beam.

Soon after the discovery of the SP effect also

potential applications became topic of interest.

The possibility to use coherent SP radiation as

bunch length diagnostic was proposed in [14,15]

and experimentally tested in Frascati [16]. SP

radiation as high resolution position sensor was

discussed in view of possible applications for ultra
relativistic beam energies up to 500 GeV in [17].

The use of SP based imaging techniques for

transverse beam diagnostics was experimentally

verified at the 855 MeV electron beam of the

Mainz Microtron MAMI [18].

One important conclusion from this experiment

which is described in more detail in [19] is that the

radiated power in the visible spectral region is very
low which makes the usage of SP based beam

diagnostics in the standard operation mode of an

accelerator rather difficult. The measured intensity

is in a satisfactory agreement with calculations

based on the theory of Van den Berg which is

formulated in close analogy to optical grating

theories [20–22]. According to this approach the

low intensity is a consequence of the extremely
small radiation factors in the order of jRnj2 �
10�5; . . . ; 10�6 at 855 MeV for gratings with
�echelette-type profiles. The radiation factors

strongly depend on the shape of the grating profile
which was observed already in earlier experiments

by Bachheimer [23]. Additionally they are a func-

tion of the beam energy and the observation

geometry. Based on the approach of Van den Berg
up to now calculations for radiation factors exist

for lamellar, sinusoidal and �echelette-type grating

profiles. The main problem connected with this

theory is that, in general, extensive numerical cal-

culations are required until finally the numerical

solution converges. A comprehensive comparison

of the various calculation methods is summarized

in [24]. Moreover, beside the experimental verifi-
cation at ultra relativistic beam energies [19] the

theory is well supported by experimental investi-

gations of incoherent SP emission in the kilo-

electron-volt range in the optical [25] and in the

far-infrared spectral region [26].

Apart from the Van den Berg approach SP

radiation is alternatively interpreted as caused by

induced surface currents which arise when the
beam electrons traverse the grating surface [27].

Based on this interpretation, in a recent publica-

tion the radiation factor for strip gratings was

calculated [28]. For a grating with infinitely thin

strips separated by vacuum gaps the radiation

factor can be expressed by a simple analytical

expression:

jRnj2 ¼ sin2 ðnpa=DÞ: ð1Þ

In this equation, n denotes the diffraction order, D
the grating period and a the vacuum gap spacing,
cf. Fig. 1. As a consequence, for a proper choice of

the grating parameters a=D ¼ 1
2
and odd-numbered

diffraction orders m ¼ 2jnj þ 1, the radiation fac-

tor would amount jRmj2 ¼ 1 independently on the

beam energy. Furthermore, for l ¼ 2jnj the radia-

tion factor jRlj2 would vanish resulting in a sup-

pression of the even-numbered diffraction orders.

With an intensity increase of the odd-numbered
diffraction orders by 5–6 orders of magnitude in

comparison to the experiment described in [19] SP

radiation would be very attractive in view of par-

ticle beam diagnostics as pointed out in [18].

Unfortunately, calculations based on a surface

current approach failed to predict the measured

intensities by orders of magnitude at ultra rela-

tivistic beam energies [19].
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Fig. 1. Definition of the geometry. The electron moves with constant reduced velocity b ¼ v=c at a distance d parallel to the grating

surface in x-direction. The grooves of height h, oriented in the y-direction and separated by a vacuum gap a, repeat periodically with the

grating period D. The direction of the photon wave vector ~k0 is described in the emission plane resulting from the z ¼ 0 plane by a

rotation about the y-axis by the angle h. In the emission plane the ~k0 vector makes an angle U with the y-axis.
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In this article calculations of SP radiation fac-
tors for a strip grating are considered which are

based on the theory of Van den Berg. The for-

malism of the theory is applied to the case of a

strip grating with finite strip height h (volume strip

grating) whose strips are separated by vacuum

gaps. For this geometry it is possible to use the

modal expansion method which for lamellar

grating profiles has been developed by Van den
Berg [22] based on the treatment of Deryugin [29]

for the case of H polarization, i.e. the vector of the

electric field is oriented perpendicular to the grat-

ing grooves. Later on it has been generalized by

Haeberl�e to both polarization states [30]. Follow-

ing this method, infinite systems of coupled linear

algebraic equations for the scattered and the

transmitted wave amplitudes for both polarization
states are derived. The systems are solved by the

method of truncation and the results for the cal-

culated radiation factors are discussed in view of

applying SP radiation for both longitudinal and

transverse beam diagnostics.
2. Smith–Purcell radiation properties

In this section a short summary of the main

properties of SP radiation is given. According to

the theory of di Francia [31], the emission mech-

anism of SP radiation can be interpreted in anal-

ogy to the diffraction of light as the diffraction of

the field of the electrons (virtual photons) which

pass the grating at a distance d away from its
surface by the grating grooves. One characteristic
signature of SP radiation is that it must fulfill the

dispersion relation [13]

k ¼ D
jnj ð1=b� cos h sinUÞ: ð2Þ

In this equation k is the wavelength of the emitted

radiation, D the grating period, n the diffraction

order, b ¼ v=c the reduced electron velocity and h,
U the emission angles as introduced in Fig. 1.

The angular distribution of the emitted power

radiated into the nth order reads [31]

dPn
dX

¼ eIn2L
2D2e0

sin2 h sin2 U

ð1=b� cos h sinUÞ3
jRnj2

� exp

�
� d
hint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbc cosUÞ2

q �
; ð3Þ

with e the elementary charge, I the beam current, L
the grating length, e0 the vacuum permittivity and

d the distance of the beam above the grating. The
calculation of the radiation factors jRnj2 is outlined
in the subsequent section for the case of a perfectly

conducting volume strip grating.

According to Eq. (3) the intensity decreases

exponentially with increasing distance d between

electron beam and grating surface. The interaction

length

hint ¼
kbc
4p

; ð4Þ

where c ¼ ð1� b2Þ�1=2
is the Lorentz factor, de-

scribes the characteristic finite range of the virtual

photons emitted and re-absorbed by the electrons.
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Furthermore, at ultra relativistic electron ener-

gies, according to Eq. (3) the radiation is emitted

in a very narrow angular region around U ¼ 90�,
i.e. in the plane containing the grating normal and
the electron beam. For ultra relativistic beam

energies the characteristic opening angle (FWHM)

can be written as

DU ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2

4p
k
d

� �2

þ 1

bc
ln 2

2p
k
d

s
; ð5Þ

i.e. the angular width can be controlled by the

beam energy, the wavelength of observation and

the distance between beam and grating surface. As

described in [18] the feature of the strongly colli-

mated emission can be exploited for SP based

imaging techniques in the case of transverse beam

diagnostics.
3. Radiation factors

In the following a short outline of the under-

lying ideas is given which leads to the derivation of

the infinite systems of coupled linear algebraic

equations. For a detailed description of the Van
den Berg theory which is the basis for the sub-

sequent considerations the reader is referred to

[20–22,24].

In Figs. 1 and 2 a schematical description of the

relevant quantities is shown. The electron moves in

vacuum with constant reduced velocity b ¼ v=c in

x-direction parallel to the grating surface along the
h

E0
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y,m
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z

z0

n

Fig. 2. Geometry of the volume strip grating. As example the electric fi

index of the local x coordinate inside the grating grooves.
trajectory y ¼ 0, z ¼ z0 ¼ d þ h=2 ¼ const. Top

and bottom surface of the grating are located in

the (x; y)-plane at zmax ¼ þh=2 respectively zmin ¼
�h=2.

According to Van den Berg the electric and

magnetic field vectors of the incoming particle

Coulomb field and the outgoing scattered fields are

expanded in Fourier integrals with respect to time t
and y coordinate. The x and z components of the

Fourier transforms can be expressed as functions

of the y components of the field vectors which

satisfy two-dimensional Helmholtz equations.
Therefore only the y components are considered in

the following. By imposing the continuity condi-

tion at the open ends of the grooves and the

boundary condition at the remaining parts of the

interface, the infinite systems of linear equations

for the amplitudes of the reflected and the trans-

mitted fields are derived. For this purpose the

fields in regions (I)–(III) according to Fig. 2 has to
be specified.

The solution of the Helmholtz equations in the

half space above the grating ðzP þ h=2Þ is com-

posed by two contributions: the inhomogeneous

solution which represents the incoming particle

field described by an evanescent plane wave, and

the homogeneous solution for the reflected wave

amplitudes which is represented by a Rayleigh
expansion:

Eyðx; z; g;xÞ ¼ E0e
ia0xe�jc0jjz�z0j

þ
X1
n¼�1

EI
y;nðg;xÞeiðanxþcnzÞ; ð6Þ
e
y,nEI

EIII
y,l

ν = 1

a

II

I

III

elds in the various regions (I)–(III) are illustrated. v denotes the
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Hyðx; z; g;xÞ ¼ H0e
ia0xe�jc0jjz�z0j

þ
X1
n¼�1

H I
y;nðg;xÞeiðanxþcnzÞ: ð7Þ

In these equations, a0 ¼ x=v ¼ k0c=v is the longi-

tudinal component and g respectively c0 ¼
iða20 þ g2 � k20Þ

1=2
are the transversal components

of the incoming wave with wave number k0.
According to Fig. 1 the corresponding compo-

nents of the scattered waves are expressed by the

angles of emergence as an ¼ k0 sinU cos h, g ¼
k0 cosU and cn ¼ k0 sinU sin h. The amplitudes of

the incoming field are E0 ¼ q=2ðl0=e0Þ
1=2 �

ðg=k0Þða0=c0Þ respectively H0 ¼ �q=2sgnðz� z0Þ
with q the electron charge [21].

Inside the grating grooves (i.e. �h=26 z6
þh=2 and 0 < xv < a) the solution of the Helm-

holtz equation is expressed by a series of cavity

modes. Following [32] the modal expansion can be
written as

Eyðx; z; g;xÞ ¼ expðia0vDÞ

�
X1

m¼�1
EII0

y;mðg;xÞe�ijmz sinðmpxv=aÞ
h

þ EII00

y;mðg;xÞeþijmz sinðmpxv=aÞ
i
;

ð8Þ

Hyðx; z; g;xÞ ¼ expðia0vDÞ

�
X1

m¼�1
H II0

y;mðg;xÞe�ijmz cosðmpxv=aÞ
h

þH II00

y;mðg;xÞeþijmz cosðmpxv=aÞ
i
ð9Þ

with xv the local x coordinate in the vth groove (i.e.

x ¼ vDþ xv with v ¼ 0;�1;�2; . . .) and jm ¼ fk20�
g2 � ðmp=aÞ2g1=2.

The solution of the homogeneous Helmholtz
equation in the half space below the grating

ðz 6 � h=2Þ is represented again by a Rayleigh

expansion,

Eyðx; z; g;xÞ ¼
X1
l¼�1

EIII
y;lðg;xÞeiðalx�clzÞ; ð10Þ

Hyðx; z; g;xÞ ¼
X1
l¼�1

H III
y;l ðg;xÞeiðalx�clzÞ: ð11Þ
The radiation factor is determined by the

amplitudes of the outgoing reflected fields, i.e. by

EI
y;n and H I

y;n. According to [21] the following

relations hold:

jRnj2 ¼
4

q2
exp½2jc0jðz0 � h=2Þ�

� e0
l0

EI
y;nE

I�
y;n

�
þ H I

y;nH
I�
y;n

�
k20

k20 � g2
ð12Þ

¼ fEI

y;nE
I�
y;n þ H

I

y;nH
I�
y;ng

k20
k20 � g2

; ð13Þ

with

E
I

y;n ¼
ffiffiffiffiffi
e0
l0

r
2

q
exp½jc0jðz0 � h=2Þ�EI

y;n; ð14Þ

H
I

y;n ¼
2

q
exp½jc0jðz0 � h=2Þ�H I

y;n: ð15Þ

In a similar way it is possible to define a trans-

mission factor for the amplitudes of the transmit-

ted field component:

jTnj2 ¼ E
III

y;nE
III�
y;n þ H

III

y;nH
III�
y;n

n o k20
k20 � g2

: ð16Þ

The task is to derive relations by which the re-

duced amplitudes Ey;n, Hy;n in the region (I) above
respectively (III) below the grating can be ob-

tained. In this case according to Eqs. (13) and (16)

it is possible to determine the radiation respec-

tively the transmission factors by which the emit-

ted power Eq. (3) can be calculated. For this

purpose the continuity condition at the open end

of the grooves ð0 < x < aÞ
lim

z#�h=2
Uy ¼ lim

z"�h=2
Uy ;

lim
z#�h=2

ozUy ¼ lim
z"�h=2

ozUy ; ð17Þ

with Uyðx; z; g;xÞ the electric respectively magnetic

field has to be exploited together with the bound-

ary conditions for the fields on the ridges ða <
xv < DÞ
Eyðxv;�h=2; g;xÞ ¼ 0;

n̂ � rHyðxv;�h=2; g;xÞ ¼ 0;
ð18Þ

where n̂ denotes the unit vector normal to the

grating surface, cf. Fig. 2. By means of these

conditions the field amplitudes in the various re-

gions (I)–(III) can be connected together.
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3.1. Determination of Hy

Inserting the combination of Eqs. (7) and (9) at
the boundary I/II and the combination of Eqs. (9)

and (11) at the boundary II/III into Eqs. (17) and

(18) results in two equations for H II0
y;m and H II00

y;m. This

allows to get rid of these two coefficients of the

modal expansion and to obtain a coupled system

of linear equations involving only the coefficients

H I
y;n, H III

y;n of the Rayleigh expansion needed to

calculate the radiation factor Eq. (13) respectively
the transmission factor Eq. (16). This system for

the reduced amplitudes of the magnetic field readsX1
n¼�1

½cnDdk;n � Vk;n�eicnh=2H
I

y;n þ
X1
n¼�1

Bk;ne
icnh=2H

III

y;n

¼ CI
k; ð19Þ

X1
n¼�1

Bk;ne
icnh=2H

I

y;n þ
X1
n¼�1

½cnDdk;n � Vk;n�eicnh=2H
III

y;n

¼ CIII
k ;

with k ¼ 0;�1;�2; . . . In Eq. (19) the quantities

are defined as follows:

CI
k ¼ c0Ddk;0 þ a

X1
m¼0

emjm
Cm þ 1

Cm � 1
Wm;kW

�
m;0; ð20Þ

CIII
k ¼ �2a

X1
m¼0

emjm
eijmh

Cm � 1
Wm;kW

�
m;0; ð21Þ

Vk;n ¼ a
X1
m¼0

emjm
Cm þ 1

Cm � 1
Wm;kW

�
m;n; ð22Þ

Bk;n ¼ 2a
X1
m¼0

emjm
eijmh

Cm � 1
Wm;kW

�
m;n; ð23Þ

Wm;n ¼ a�1

Z a

0

dx cosðmpx=aÞ expð�ianxÞ; ð24Þ

Cm ¼ expð2ijmhÞ; ð25Þ

em ¼ 2� dm;0: ð26Þ

3.2. Determination of Ey

The analogous procedure, applied to the electric
fields Eqs. (6) and (8) at the boundary I/II and Eqs.
(8) and (10) at the boundary II/III, leads to the

coupled system of linear equations for the reduced

amplitudes of the electric field,

X1
n¼�1

½�Ddk;nþ cnVk;n�eicnh=2E
I

y;nþ
X1
n¼�1

cnBk;ne
icnh=2E

III

y;n

¼CI
k; ð27Þ

X1
n¼�1

cnBk;ne
icnh=2E

I

y;nþ
X1
n¼�1

½�Ddk;nþ cnVk;n�eicnh=2E
III

y;n

¼CIII
k ;

with k ¼ 0;�1;�2; . . . and

CI
k ¼

g
k0

a0
c0

Ddk;0

"
þ 2ac0

X1
m¼1

Cm þ 1

jmðCm � 1ÞUm;kU
�
m;0

#
;

ð28Þ

CIII
k ¼ 4a

g
k0
a0

X1
m¼1

eijmh

jmðCm � 1ÞUm;kU
�
m;0; ð29Þ

Vk;n ¼ 2a
X1
m¼1

Cm þ 1

jmðCm � 1ÞUm;kU
�
m;n; ð30Þ

Bk;n ¼ 4a
X1
m¼1

eijmh

jmðCm � 1ÞUm;kU
�
m;n; ð31Þ

Um;n ¼ a�1

Z a

0

dx sinðmpx=aÞ expð�ianxÞ: ð32Þ

For the determination of the reflected and

transmitted fields the infinite systems of equations

are truncated and the order of truncation N is

increased until convergence is achieved. Eqs. (19)
respectively (27) represent a ð4N þ 2Þ dimensional

system of linear coupled equations. The coeffi-

cients of this matrix system can be calculated

analytically, and the solution for all different

modes is directly obtained by inversion of the

matrix.
4. Numerical results

In the following computational results are pre-

sented for radiation and transmission factors at

ultra relativistic energies. In this case SP radiation
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is emitted under U ¼ 90�, cf. Eq. (5) and the

incoming electric field vanishes because E0 ¼ 0.

Due to the boundary conditions at the grating

surface also the reflected electric field equals zero,
therefore the calculation of jRnj2, jTnj2 is restricted
to the determination of the magnetic field Eq. (19).

In order to achieve a sufficient accuracy at the

one hand and a reasonable computational time at

the other hand for the subsequent calculations the

order of truncation is chosen as N ¼ 100. Com-

pared to a calculation with N ¼ 500 the change in

jRnj2 and jTnj2 due to the truncation is less than 5%.
Furtheron in order to obtain reliable convergence

of the numerical solution by reducing the number

of propagating diffraction orders the lower limit in

k=D is chosen as 0.2.

In Fig. 3 radiation and transmission factors are

shown as function of the ratio k=D for various
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Fig. 3. Calculated functional dependence of radiation factors (solid l

h=D ¼ 1 (a), 0.1 (b), 0.01 (c) and 0.001 (d). Parameters of calculation:

factors of the ordinates.
aspect ratios h=D and a=D ¼ 0:5, jnj ¼ 1 and

E ¼ 855 MeV which corresponds to the beam en-

ergy of the experiment reported in [19]. In these

figures, the most striking feature is the occurrence
of sharp fluctuations at some critical values of k=D
which are more pronounced for higher aspect ra-

tios h=D. A number of fluctuations is related to the

Wood–Rayleigh anomalies [33] and occurs at

values of k=D at which an evanescent reflected

respectively transmitted wave changes into a

propagating one. The remaining fluctuations cor-

respond to values of k=D at which an evanescent
mode in the grating grooves changes into a prop-

agating one [22].

From Fig. 3 it can be concluded that jR1j2 � 1

for the volume strip grating at 855 MeV, although

the ratio a=D ¼ 1
2
was chosen such that jR1j2 ¼ 1

according to Eq. (1). At ultra relativistic beam
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ine) and transmission factors (dashed line) on the ratio k=D for

a=D ¼ 0:5, jnj ¼ 1 and E ¼ 855 MeV. Note the different scaling
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Fig. 4. Radiation factors (solid line) and transmission factors (dashed line) as function of k=D for a=D ¼ 0:1 (a) and 0.9 (b).

Parameters of calculation: h=D ¼ 0:5, jnj ¼ 1 and E ¼ 855 MeV.
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energies the calculations based on the Van den
Berg theory are therefore in contradiction to the

ones of the surface current model, a fact which was

pointed out already for �echelette-type grating

profiles in [19]. Additionally it is alluded that the

radiation factors for the volume strip grating in

second diffraction order do not vanish as expected

from Eq. (1) for a=D ¼ 1
2
.

In Fig. 4 calculations are shown with the ratio
a=D as parameter and h=D ¼ 0:5, jnj ¼ 1 and

E ¼ 855 MeV. From these two examples it can be

seen that a variation in a/D influences the shape of
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Fig. 5. Calculated functional dependence of the radiation fac-

tor jR1j2 on the ratio k=D for various electron energies.

Parameters of grating: a=D ¼ 0:5, h=D ¼ 0:495.
the anomalies drastically, but it does not result in a
significant increase of jR1j2, jT1j2.

The energy dependence of the radiation factors

is calculated in Fig. 5. They scale roughly inversely

proportional to c2 in contradiction to the predic-

tions of a constant behavior from the surface

current model in [28]. This dependency was poin-

ted out already in [19] for �echelette-type grating

profiles. The strong energy dependence can be
illustrated by a simple picture: in the limiting case

b ! 1 the incoming virtual photon field with

characteristic opening angle 1/c transforms in a

real one which propagates parallel to the grating

surface, i.e. the photons are not diffracted and the

radiation factor equals zero. Nevertheless a well-

founded explanation for the c�2 decrease found

empirically is still due.
5. Smith–Purcell radiation and beam diagnostics

Based on the preceding calculations this section

is devoted to the usage of SP radiation in view of

particle beam diagnostics. As indicated in this

article the use of a strip grating profile for the
radiation generation does not help offhand to

overcome the problems of SP based diagnostics

which are discussed in detail in [18]. In any case a

careful optimization of the grating for the specific

purpose of application has to be done.

In the case of transverse beam diagnostics the

limiting factor for SP based beam imaging is the
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extremely low radiated intensity. As can be seen

from Fig. 3(c) where jR1j2 is in the order of 10�3 it

is possible to increase the radiation factor in

comparison to the experiment reported in [18,19].
This increase by about three orders of magnitude

at E ¼ 855 MeV could help to establish SP radia-

tion as diagnostic tool. According to this example

with h=D ¼ 0:01, a typical wavelength k ¼ 500 nm

in the optical spectral region and the maximum of

the radiation factor at k=D � 0:9, the grating

parameters would be D � 555:6 nm respectively

h � 5:6 nm. The technical realization of such a
grating with self-supporting strips in the nanome-

ter region separated by vacuum gaps seems to be

unrealistic. Therefore more detailed optimization

studies are required taking into account in addi-

tion the technical aspects.

A possibility to elude this problem is to work at

longer wavelengths. According to Eq. (5) this

could be done without affecting the strongly col-
limated emission in U if the distance d between

electron beam and grating surface is scaled

simultaneously. However, an increase in the

wavelength results in a decrease in the radiated

power as can be seen if the dispersion relation Eq.

(2) is inserted in Eq. (3). Additionally it has to be

taken into account that detector systems in the

infrared or even far-infrared spectral region are
less sensitive than at optical wavelengths. As a

result the increase in the radiation factor could be

canceled out by the decrease of the emitted power

and the detection efficiency.

As an alternative it might also be considered to

build up the grating from a substrate covered by

thin metal strips. However, this approach would

require a modified theory which takes into account
the modification of the modal expansion due to the

material properties of the substrate and is out of

the scope of this article.

The longitudinal beam diagnostics for bunch

length determination is based on the investigation

of the coherently emitted power as function of the

wavelength. For SP radiation this corresponds to a

measurement of the intensity as function of the
observation angle h due to the dispersion relation

Eq. (2). As pointed out in [18] in this case the

limiting factor is the angular respectively k=D
dependence of the radiation factors which may
destroy the signature on the bunch leading to a

misinterpretation of bunch shape and length.

From Fig. 3 it is to conclude that the influence

of the anomalies is weaker for shallow gratings. At
least the fluctuations which arise due to the

transformation of an evanescent mode in the

grating grooves into a propagating one are less

pronounced and finally disappear in the limiting

case h ! 0. This effect of ‘‘smoothing out’’ is not

only a property of a strip grating as indicated in

Fig. 6 where additional calculations for lamellar

and �echelette-type profiles are shown. Therefore
bunch lengths measurements with SP radiation

based on the radiation production from shallow

gratings might be a promising approach. In this

case even the restriction due to the technical con-

straints is less severe because the region where the

transition from incoherent to coherent radiation

emission occurs is typically in the far-infrared

spectral range.
6. Summary

In the present article a model for the determi-

nation of radiation and transmission factors for

Smith–Purcell radiation from a volume strip

grating together with numerical calculations are
presented. The calculated values of jR1j2, jT1j2
strongly depend on the beam energy and are in the

order of 10�6 at 855 MeV in accordance with the

radiation factors for �echelette-type grating profiles

and the experimental findings of [19]. The calcu-

lations based on this model show large deviations

in comparison to the radiation factor Eq. (1) as

expected from the surface current model [27,28]. In
this context one has to consider two main differ-

ences in the underlying approaches.

First the surface current model belongs to the

category of scalar grating theories in which no

polarization effects are included which are

responsible for the appearance of Wood–Rayleigh

anomalies. This simplification was already pointed

out in [27]. Falling back to experimental verifica-
tions of optical grating theories which are the basis

of the Van den Berg theory it is known that there

was often poor agreement between scalar models

and experiments. For a detailed discussion the
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Fig. 6. Radiation factors (solid line) and transmission factors (dashed line) for a strip profile (a), a lamellar profile (b) and an �echelette-

type profile (c). Parameters of calculation: a=D ¼ 0:5, E ¼ 855 MeV. The aspect ratios h=D correspond to the values of two �echelette

gratings with blaze angles 17.27�, respectively, 41.12� which were used in the experiment [19].
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reader is referred to the books of Petit [33] or

Hutley [34].

Secondly in the surface current approach the

height h of the grating strips is not taken into ac-

count. Apart from the technical aspect that the
ridges for a strip grating separated by vacuum

gaps must have a certain height the calculations in

Fig. 3 show a strong influence of the radiation
factors on h. Although the range of validity for the

surface current model is restricted to shallow

gratings [27] the comparison of Fig. 3(c) and (d)

indicates that even shallow gratings still show a

pronounced h dependency.
Finally possibilities to use SP radiation for

beam diagnostics are discussed. While SP based

bunch length measurements might be a promising
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approach the application for transverse beam

imaging in the optical spectral region seems to fail

because of the technical realization of the appro-

priate grating structure. For this purpose more
detailed optimization studies are required which

may result in an extension of the theoretical ap-

proach.
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