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Abstract 
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Mechanical Designs ". 

The purpose of the event is: 

-          To discuss in detail technology issues related to the subjects. 
-          To understand the specifications for upcoming new hadron facilities 
-          To propose concrete work packages for the coming years in order to meet the specified 
objectives. 
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BPM simulations for the FAIR SIS100

synchrotron using Microwave Studio

P. Kowina for the GSI Beam Diagnostic Group,

Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany

Abstract

In the present contribution results of a simulation of linear-cut Beam
Position Monitors (BPMs) based on a design using metal coated ceram-
ics are compared for two different geometries. The investigated BPMs
will be used in the SIS100 synchrotron at the FAIR facility. The sim-
ulations were performed using CST Suite 2006. The main goals of the
design optimisation were pick-up sensitivity and linearity of the position
determination. The effects often observed in BPMs, like resonances or
cross–talks, are discussed together with methods of their reduction. In
the last part the questions concerning mechanical challenges in the BPM
design are addressed and partially answered.
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1 Introduction to the Fair Facility

The Facility for Antiproton and Ion Research (FAIR), presently under design
at GSI, will enable production of intense beams for the full spectrum of ion —
starting from antiprotons up to the radioactive beams of uranium ions. The ions
will be accelerated up to the maximal energies of 35 GeV or 45 GeV per nucleon
depending on the ion type and charge state. The variety of different injectors,
synchrotrons and storage rings, see Fig. 1, allows to cover almost all operational
modes like slow extraction of the high charge state ions, pulse extraction of the
beams with extremely high intensities or storing of the antiprotons (or ions) e.g.
for on–beam experiments, see Ref. [1]. The Beam Position Monitors (BPMs)
presented in this contribution will be a part of the beam instrumentation of the
superconducting heavy ion synchrotron SIS100. The SIS100 has circumference
of 1084 m and is one of the two main synchrotrons in the FAIR accelerator
complex. It consists superconducting, fast ramped (4 T/s) magnets with a
maximal magnetic flux of 2.1 T. The SIS100 parameters are calculated for two

design beams: 4 × 1013 protons at energy of 29 GeV and 5 × 1011 U
+

28 ions
with an energy of 1.5 GeV/u. The features of SIS100 require a special design
of BPMs that considers, for instance, operation of the device at liquid helium
temperature.

Figure 1: FAIR facility. The present GSI facility, depicted with blue colour, will
be used as an injector for the future accelerators and beam lines marked with
red colour and being presently under design.

1.1 Positioning of BPMs in the SIS100 lattice

All 84 BPMs will be installed in the cryostats of the quadrupole doublets [1,2].
In the arcs the BPMs will be located directly behind the horizontally focusing
(second in doublet) quadrupole, see Fig. 2 (top). In this position the horizontal
β-function reaches its maximum. On the contrary, in the straight sections the
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BPMs will be installed in the middle of the quadrupole doublet at the maximum
of the vertical β-function, Fig. 2 (bottom). For almost all operation modes the
average phase advance of the betatron oscillations between subsequent BPMs
will be smaller than 90o. As it is stated in Ref. [3], this is sufficient for the
unambiguous closed orbit correction feedback system.

Figure 2: Positioning of the BPMs in the SIS100 lattice.

2 Parameters of SIS100 BPMs

For the foreseen bunch frequencies of 0.5 MHz < fb < 2.7 MHz and aspired
bunch lengths the designed BPM should show a good response in the frequency
range from ∼ 0.1 MHz to 100 MHz. Due to the relatively large bunch length
(in comparison to the length of the BPM) and the bunch frequency in the order
of a few MHz, the linear cut type BPMs are preferred. The high linearity of the
position determination, typical for this BPM style, is advantageous for beams
that are transversally large and have a complex charge distribution.

All BPM components have to be suitable for vacuum pressure better than
10−11 mbar. Two design types ware taken into account: i) design based on metal
electrodes and ii) design based on metal coated Al2O3 ceramics. A construction
with metal electrodes benefits from its simplicity. In contrast, the advantage
of a ceramic solution is a compact construction allowing easy positioning and
good mechanical stability in the cryogenic environment. In order to reach the
desired position accuracy of 100 µm [4], the mechanical stability has to be about
50 µm. It seems that this can be achieved only with a BPM design based on a
metal coated Al2O3 ceramics (type ii)).
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A smooth passage of the beam pipe aperture between subsequent elements
in the lattice prevents a beam–to–ground impedance jump, which is crucial for
beam stability. Therefore, the aperture of the BPM is identical to the aperture
of the proceeding quadrupole chamber.

The preliminary design of the SIS100 BPM is shown in Fig. 3. The elliptic
ceramic pipe is coated on the inner side with 30 µm of PtAg metal layer. In this

Figure 3: Preliminary design of the SIS100 BPM.

metal coating the electrode shapes are formed by cutting out grooves. Available
total detector length of 400 mm (flange–to–flange) allows to equip of all BPMs
with electrodes for both, horizontal and vertical beam position measurement.

2.1 Dynamic of the signal amplitude

For the minimal current of the beam that is expected in the SIS100 in low in-
tensity operation mode 108 charges per cycle will be spread over 100 ns long
bunches. Assuming a beam of bunches with parabolic density distribution circu-
lating in the synchrotron ring with the velocity of light and investigated BPM
geometry with 125 mm long signal plates with plate–to–ground capacity of
45 pF, the expected peak voltage will be as low as 1.1 mV [5]. This is barely
sufficient to obtain a detectable difference signal, even with high impedance
preamplifiers directly mounted on the signal feed-through. At the other ex-
tremum (i.e. for the intense proton beam) 4 × 1013 charges will be compressed
into a single 25 ns long bunch [1]. For such beams, the maximal expected ampli-
tude reaches 1.8 kV. In this case the preamplifier protection becomes necessery.
The huge dynamic range of over 120 dB requires not only a special electron-
ics [6], but also a very careful BPM design. In particular the relative distances
between electrodes, guard rings and chamber elements have to be large enough
to prevent discharges.

3 FEM simulations

As a tool for simulations CST Suite 2006 was used [7]. This software uses the
Finite Element Method (FEM). All BPM components, i.e. caramic tube, chassis,
feed–throughs etc. were defined using materials with realistic permitivity and
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conductance. All simulation were performed using the Time Domain Solver in
the bandwidth of 200 MHz. The usage of the Time Domain Solver was predicted
by:

• the simulation duration which — in the contrast to the Frequency Domain
Solver — does not depend on number of frequency steps [7].

• the discrete S-parameter port can be defined for the Time Domain Solver
only. This is necessery when BPM outputs are defined with an impedance
of 1MΩ.

The hexahedral mesh grid was used being the only possibility when using the
Time Domain Solver. For the simulated BPM models the number of single
mesh cells ranges from 1 × 106 to 3 × 106, depending strongly on the model
complexity. The number of mesh cells is blowed up mainly by components that
are oriented diagonaly in respect to the main axis, (like e.g. the separating
ring in the diagonal cut). A broad band Gauss shaped signal was used as the
excitation signal with the rms width of 5 ns, which covers the frequency band
from 0–200 MHz. The electrode outputs were defined as diescrete S–parameter
ports with characteristic impedance of 50 Ω for the resonance and cross–talk
investigation, and 1 MΩ for the senvitity determination, respectively.

3.1 Investigation of ”low frequency” resonances and re-

duction of the plate–to–plate cross talk

Elliptic BPM geometry is already too complicated for the clear three dimentional
representation of the electric fiels. Therefore, the next two topics will be discused
basing on the investigations of the SIS18 BPMs (see Fig. 4 left) and BPMs build
for the HIT facility discussed more precisely in Ref. [8].

In the simulations the electrode outputs were defined as discrete S–parameter
ports with the characteristic port impedances of 50 Ω. This is equivalent to
measurements using two–port Network Analyser. For the capacitive BPM the
S11-parameter (reflection) should be consistent with 0 dB over the whole inter-
esting frequency range. Any sharp minium in S11 spectrum indicates resonant
behavior of the BPM for this given frequency. This resonance makes the BPM
insensitive for this given frequency. The frequency spectrum of S21–parameter
(transmision) is a matter of coupling (plate–to–plate cross–talk) between the
electrodes in the tested pair.

3.1.1 ”Low frequency” resonances

All structures have characteristic eigen–resonances with the base frequency
mainly given by longest geometrical size of the structure. The low frequency

resonances are those resonances that apear in the interesting bandwidth — in
this case — up to 200MHz. In the BPM shown in Fig. 4 (left) the RF signal is
connected with the one of the horizontal plates. As it can be seen on the three
dimensional plot of the electric fields in Fig. 4 (right), the signal amplitude on
this plate, is one order of magnitude smaller than the amplitude of the reso-
nance wich is excited on the opposite BPM side – on the vertical plates. This
poor separation between the vertical and horizontal part of BPM is caused by
insufficient connection of the middle guard ring with the BPM chassis. It is
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made out of 1 mm thick cupper wire. Such type of connection does not provide
a good ground definition for the higher frequency components of the signal.

Figure 4: SIS18 BPM (1989) (left) and resonant behaviour observed at 295 MHz
(right).

The massive middle guard ring connected directly to the BPM chassis, used
in the advanced BPM design for the HIT facility (shown in Fig. 5), allows for
separation between orthogonal BPM electrodes better than −40 dB [8]. This
divides the BPM into two separate pieces and in consequence shift the first
possible resonance far beyond 400 MHz.

Figure 5: Advanced BPM design for the HIT facility.

3.1.2 Reduction of the plate–to–plate cross–talk

The next problem in the BPMs based on the ceramics is the poor electrical
separation between the adjacent signal plates, see Fig.6 (left). This strong
plate–to–plate cross–talk is caused by the large ceramic permittivity ǫr=9.6
which induces a big coupling capacitance. The larger the coupling the smaller
is the difference of the output signals for a given beam displacement. This
deteriorates the BPM position sensitivity. In the simulations the cross–talk has
been investigated for i) horizontal plates (left-right), ii) vertical plates (top–
bottom) and mixed combinations like top–left etc. The separation between the
two adjacent horizontal plates for the BPM shown in Fig. 4 (left) is -8 dB at the
maximum (i.e. at ∼ 20 MHz), and is depicted in Fig. 6 (right) with a dashed
line. An insertion of the separating ring in the diagonal cut between the adjacent
plates (Fig. 5) increases the plates separation to −21 dB indicated by the solid
line in Fig. 6 (right).
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Figure 6: Left: cross–talk between the adjancent horizontal plates for the SIS18
like BPM. Right: corss–talk frequency spectrum of [S21]-parameter (transition)
obtained in the simulations for the BPMs with and without separating ring.

The results of the simulations are verified by the measurements of the HIT
BPMs that were performed using a network analyser, see Fig. 7.

Figure 7: BPM for the HIT facility (left), and measurements performed us-
ing a Network Analyser: reflection [S11] (right top) and transition [S21] (right
bottom).

3.2 Optimization of the position sensitivity

The position sensitivity is the response of the BPM (expressed as the difference
of the electrode signals ∆U normalized to their sum ΣU) to changes in the beam
position and is given by:

∆x = K
∆U

ΣU
+ δx (1)

The parameter K is usually called pick-up constant. The pick-up offset δx

represents a misalignment of the electrical center with respect to the geometrical
center of the BPM.

In the simulations the BPM with beam inside was treated as a semi–coaxial
TEM wave guide. The ion beam was approximated by a cylinder of a Perfect
Electric Conductor (PEC) with a diameter of 1.5 mm and a length corresponding
to the length of the vacuum chamber. The beam was spanned between two wave
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guide ports defined on both ends. All four electrode outputs were defined as
S-parameter ports with a characteristic impedance of 1 MΩ. All simulations
were performed using the time domain solver in the bandwidth of 200 MHz.
The simulated beam position was swept in the horizontal plane in the range
±50 mm in 10 mm steps.

The position sensitivity of the BPMs was calculated from the S-parameters
expressed in the frequency domain:

Sright←in − Sleft←in

Sright←in + Sleft←in

=

Uright

Uin
−

Uleft

Uin

Uright

Uin
+

Uleft

Uin

=
∆Uhor

ΣUhor

, (2)

where the S-parameters are given by the output/input voltage ratio [9]. For each
beam position the full set of the S-parameters was analyzed for both horizontal
and vertical planes.

Figure 8: Models of the SIS100 BPMs used in the simulations, see description
in text.

In the simulation the two models for SIS100 BPMs shown in Fig. 8 were
compared. Both models are based on the ceramic pipe solution but they differ in
the separating ground rings positioned in the diagonal cut between the adjacent
plates (see Fig. 8 right). Only in the second model an additional massive guard
ring is installed at the end of the signal plates. The geometrical design of the
investigated BPM was optimizes regarding the following criteria:

• Linearity — high linearity is typical for the diagonal–cut type BPMs, how-
ever, it can be strongly spoiled by unhomogenities of the magnetic and/or
electric field caused by e.g. too large distance between subsequent elec-
trodes or by structure discountinities. For the BPM under investigation
the maximum deviations from the straight line fit shown in Fig. 9 are
smaller than ±2% for the BPM without ring, and below ±0.5% for the
BPM with ring, over the whole ±50 mm displacement range.

• The position sensitivity, as given by the slope of the curve in Fig. 9 (left),
is much higher for the BPM with separating ring as compared to the BPM
without ring 1. This is achieved by insertion of the separating ring that
reduces the plate—to—plate cross–talk from -9.5 dB to -21 dB, see Fig. 9
(right).

1For the same beam displacement one observe much higher ∆U
ΣU
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• The offset of the electrical centre of the BPM in respect to its geometrical
centre can be reduced from about 13 mm (crossing point with the x-axis
of the curve with black circles in Fig. 9 left) to almost zero (curve with
the green triangles) by an additional massive guard ring installed at the
end of the BPM electrodes (see Fig. 10). It indicates that the geometry of
the whole environment (including also the neighbouring guard rings) has
to be completely symmetrical for both electrodes belonging of the same
electrode pair.

• A very careful treatment of the fringe fields is required in order to achieve a
maximum independence of the measurement in vertical and horizontal di-
rections. Particularly, the length of all guard rings has to be large enough
to move the fringe fields distortions possibly far away from the electrodes.
As it can be seen in Fig. 9 (left, blue squares and red triangles) the hori-
zontal displacement of the beam has no influence on the signal measured
in the vertical plates.
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Figure 9: Left: position sensitivity for the BPM without and with separating
ring; Right: Separation between two adjacent signal plates (here horizontal)
obtained in the simulations of models with (solid line) and without (dashed
line) separating ring.

Figure 10: The massive guard ring installed in SIS100 BPM at the end of the
ceramic pipe, see description in text.

3.3 Frequency dependence of position sensitivity

The position sensitivity is often frequency dependent, see e.g. Ref. [8]. This is
especially important in the case of bunches that are strongly deformed and/or
for the bunches that have inconstant longitudinal structure. For those bunches
the frequency spectrum varies in time, which effects the beam position estima-
tion. Therefore, the frequency response of the position sensitivity should be
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always investigated for the interesting frequency range. The analysis results are
presented in Fig. 11 showing only a moderate frequency dependence even at
higher frequencies.
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Figure 11: Position sensitivity as a function of frequency for the BPM without
(left) and with (right) separating ring.

Least-square fits of a linear function given by Eq. 1 to the data for each
frequency value yield the frequency dependencies of both parameters, position
sensitivity and offset. These dependencies are shown in Fig.12.
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Figure 12: Frequency dependence of “pickup constant” K (top) and offset of
the BPM electric centre (bottom) for the horizontal beam displacement.

Position sensitivity and offset for both investigated geometries are almost
frequency independent in the relevant frequency range. However, the position
sensitivity of the BPM with guard ring is a factor of two larger compared to
the BPM without ring 2. The small reduction of the sensitivity at higher
frequencies is caused by inductive cross–talk between signal plates and guard
rings that is more pronounced at higher frequencies.

2The smaller the value of K in the Eq. 1 the larger is the BPM response (∆U

ΣU
) for the

same beam shift (∆x).
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4 Summary and outlook

Simulations performed using CST Suite 2006 are able to reproduce effect ob-
served in the investigated BPMs. It is shown that a BPM design with separating
ring provides good linearity and much better position sensitivity than a BPM
without ring. Hence, the separating ring should always be considered in the
BPM design as long as a ceramic solution is used. In the future signal/field
simulations further geometries, like those described in Ref. [10] will be tested
and adopted for the elliptic electrode shape.

5 Mechanical problems – open questions

The operation of SIS100 in cryogenic environment and the demands for good
mechanical stability require answers on the following questions:

1 Is the metal coated ceramic suitable for low temperatures (see Fig. 13,
detail 1)?

2 How should the ceramic pipe be connected with the BPM chassis (see
Fig. 13, detail 2)?

3 How to solve the problems concerning connection and positioning of guard
rings in the BPM chassis (see Fig. 13, detail 3)? — This connection should
guarantee good electrical contact between the guard rings and the BPM
body but, on the other hand, should allow contraction compensation of
the ceramic pipe.

4 Which solution for the signal feed through could give a stable enough
electrical connection with the coating material of the ceramic pipe, that
at the same time, is able to compensate relative displacements of the
connected elements (see Fig. 13, detail 4)?

Figure 13: Most challenging detail in the SIS100 design, see description in text.

The first tests of the mechanical features of ceramics at low temperatures
and studies based on experiences collected in other institutes allows to prepare
preliminary answers on the questions listed above:

11

14



ad.1 Two samples of the ceramic–based BPMs shown in Fig. 14 were tested
using liquid nitrogen — each sample in 20 thermal cycles. In the last ten
cycles the samples were rapidly put into liquid nitrogen to check effects of
the thermal shock. The surfaces of the samples were checked for cracks or
any other form disintegrations using scanning–electron microscopy. The
test samples were:

- CLIC-III BPM: diameter of 50 mm, 2mm wall thickness, coating 5 −

−10µmMoMN , 5µmNi and ∼ 1µmAu

- GSI-Unilac ring pickup: diameter of 58 mm, 4mm wall thickness, coating
metal: 10 −−50µmMoMN , 1 −−3µmNi

In all tests no changes were found neither in the ceramics nor in the metal
coating. That indicates that the ceramics can be used under the cryogenic
conditions.

Figure 14: Samples use in the cryogenic tests (left) and an example of the surface
picture taken using electron microscope (right).

ad.2 The ceramic–metal interconnection was already tested under cryogenic
conditions for many element types in hundreds of locations in supercon-
ducting Nuclotron synchrotron in Dubna, see Fig. 15. This interconnec-
tions remain tight and not destroyed even after several tens of thermal
cycles. To solve particularly the problem marked in Fig. 13 with number
(2) one can use analogical solution as for the ceramic beam pipe insertion
marked in Fig. 15 with arrow. However, first the mechanical stability of
this connection have to be tested.

Figure 15: Left: Different examples of the metal–ceramics interconnections used
in Nuclotron in Dubna. Middle and right: Ceramic insertion used as an isolator
in the superconduction coils in Nuclotron quadrupole.
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ad.3 For the good positioning and proper RF connection of the guard rings
to the BPM chassis one can use a multi-contact band positioned in the
groove formed on the outer side of the guard ring, see Fig. 16. This solu-
tion, used already e.g. for CLIC-III BPMs [11], provide good connection
for the whole frequency range and leaves enough room for contraction
compensation.

Figure 16: Possible solution for the guard ring positioning in BPM chassis:
multi-contact band inserted in the groove formed in the outer part of the guard
ring.

ad.4 The question concerning the signal feed–through remains open. There is
a number of different possibilities like mini bellows used at DESY [12] or
a special membrane connection used at RHIC BPMs, but it is not tested
yet if those solutions can be applied in SIS100 BPMs.

5.1 Next steps

Further mechanical tests are foreseen for all crucial BPM components. The
samples of feed–through ceramics–metal interconnections etc. will be prepared.
All samples will be tested in liquid helium in several tens of thermal cycles.
A possible degradation of the sample structure will be investigated in between
subsequent thermal cycles. The tests will be performed at GSI in a helium
cryostat especially build for this purpose.
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Electromagnetic Simulations for the PETRA III BPMs 

N. Baboi, DESY, Hamburg 

1. Introduction 

1.1. PETRA III: 
PETRA III is a new high-brilliance synchrotron radiation source to be built at DESY, 

Hamburg [1]. Planned to start operation in 2009, the facility will have 14 beam lines spread 
along one eighth of its circumference. 40 to 960 bunches with a current of 100 mA and an 
emittance of 1 nm·rad will be circulated at 6 GeV. The topping up operation will ensure a 
stable beam. 

235 beam position monitors (BPM) of button type with several different designs will be 
built in the various chamber sections of the accelerator.  These monitors have been studied 
through various methods, such as measurements on button models, analytical calculations and 
simulations of the electromagnetic fields. This report presents simulations made with two 
electromagnetic field codes, MAFIA [2] and Microwave Studio [3], on the characteristics of 
these BPMs. The results for a few types of monitors are shown. 

1.2. BPM characteristics 
Most of the vacuum chamber along the PETRA III circumference has elliptical cross-

section of various dimensions. The pickups of the BPMs are placed up-right (UR), up-left 
(UL), down-right (DR) and down-left (DL) (see Fig. 1). 

 

 
Figure 1: Schematic of a typical BPM for PETRA III 

Through combination of the signals Φ at these buttons, excited by the beam, one gets 
signals, ΦH and ΦV, proportional to the horizontal and vertical beam offsets from the chamber 
center (eqs. (1)): 
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The monitor constant is defined as the slope of ΦH and ΦV at the chamber center: 

( ) ( )001            001
==Φ

∂
∂

===Φ
∂
∂

= y,x
yK

,y,x
xK V

V
H

H
   (2) 

From here one can calculate the measured beam offset with a good approximation over a 
certain range as: 

VVHH Ky,Kx Φ=Φ=                    (3) 

In conjunction with the characteristic of the electronics used with a BPM, K gives the 
resolution of the monitor. 

Another characteristic of a BPM is the coupling of the beam to the pickups, which tells 
how much signal is delivered by a pickup for a given beam. 

2. Electrostatic Simulations 
Although they cannot give a full picture of the signals from a BPM, electrostatic 

simulations can lead to the monitor constant and information on the coupling factor. We use 
MAFIA for such simulations [2]. 

2.1. Method 
In most cases a 2D model is sufficient to calculate the monitor constant and a relative 

coupling factor. Fig. 2 shows the model of a BPM for the damping wiggler section of 
PETRA III. The chamber profile is flat with rounded ends, with dimensions 120mm×30mm. 
The background is defined as perfect conducting, while the chamber is defined as vacuum. 
The four pickups are defined as being of different materials, all perfect conductors, but with 
the possibility to define a different potential applied to each of them. 

 

 
Figure 2: 2D model of a BPM for the damping wiggler section 

We apply 1V at one of the buttons, while we keep the others at 0V, and calculate the 
electric field distribution. By considering the symmetry of the model, one can then calculate 
the field for the case of applying 1V at each of the pickups individually. By combining the 

 distance between buttons = 24 mm 
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four results, based on reciprocity, one can then calculate ΦH and ΦV, and from here the 
monitor constants, KH and KV. 

We define the coupling factor between the beam and the pickups, as the voltage at the 
middle of the vacuum chamber when applying 1V at one of the pickups. Although this 
number will not give us the signal amplitude for a real beam, one can compare in this way the 
signals for various monitors. For example, based on experience, 10 % indicates a strong 
coupling for the PETRA III monitors [4]. 

2.2. BPM for the damping wiggler section 
Fig. 3 shows results for the BPM for the damping wiggler section. The equipotential 

electric field lines when applying 1V at the UR-pickup are shown in plot a, as well as the 
voltage along the vertical and horizontal cross-sections through the chamber center (plots b 
and c respectively). At the chamber middle one obtains 0.1V, or a coupling of 10 %. The 
locations where 0.01V is found delimit approximately the range where a signal can still be 
measured. A more relaxed range for voltage above 0.02V still indicates a rather large position 
range. 

 
Figure 3: Potential of the electric field when applying 1 V on the UR pickup. a: equipotential field 

lines; b: potential along vertical cross-section and c: potential along horizontal cross-section of 
vacuum chamber 

Fig. 4 shows ΦH and ΦV in the chamber cross-section, while Fig. 5 plots the same quantities 
along the horizontal and vertical axes. The monitor constants are: 1/KH = 0.08 mm-1 and 1/KV 
= 0.06 mm-1. For a horizontal beam position resolution of 1 μm one needs 8·10-5 resolution in 
ΦV, (given by the electronics). 

a 
b

c 
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Figure 4: ΦH and ΦV in the transverse section of the vacuum chamber. 

 
Figure 5: ΦH and ΦV along the horizontal and vertical cross-sections through the center of the vacuum 

chamber. 

Various horizontal distances between the two upper and lower pickups have been 
considered. Table 1 shows the results for several values. A distance of 31 mm gives a 
somewhat low coupling, with very different monitor constants for the 2 transverse directions. 
While a distance of 20 mm gives equilibrated monitor constants in both directions, it is harder 
to realize mechanically. Therefore a distance of 24 mm has been chosen for this monitor. 

ΦH 

ΦV 

ΦH 

ΦV 
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Table 1: Monitor constants and coupling factors for various distances between the pickups 

Pickup distance 1/Kx [mm-1] 1/Ky [mm-1] Coupling [%] 
20 0.074 0.070 12 
24 0.083 0.061 10 
31 0.093 0.045 7 

2.3. Coupling between pickups 
Another concern with button type BPMs is the coupling between the pickups. A strong 

coupling may lead to the mixture of reflections from one pickup into the signal of another 
pickup. This is particularly critical for the BPM in the narrow undulator chamber with 
dimensions 66mm×11mm. In this chamber the pickups have to be longitudinally displaced 
with respect to each other due to mechanical reasons. 

We attempt to extract information about the coupling between the button with a MAFIA 
electrostatic simulation. For this we look at a 2D model of a section through the 4 pickups. 
Note that the width of the model is therefore larger than the chamber width. We apply 1V at 
the UR pickup and define the UL pickup as vacuum (Fig. 6-a). Then we look at the field 
profile along vertical sections through the chamber middle (Fig. 6-b) and through the left 
pickups (Fig. 6-c). The field through the left buttons suggests a coupling of the UR pickup to 
the UL one of ca. 0.009 %, which is negligible, as compared to the coupling for this monitor 
of the pickup to the beam of 23 %. 

 
 

Figure 6: Coupling between UR and UL pickups of a BPM for the undulator chamber. Potential for 1V 
applied at the UR button: a: in 2D monitor cross- section; b: along vertical cross-section through 

chamber middle and c: along vertical cross-section through UL pickup. 

button 
defined as 

vacuum 

a 

b

c
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A similar reasoning leads us to a coupling of the UR to the DR button of 10 %, (Fig. 7) 
comparable to the coupling to the beam, which seems unreasonable. Moreover, RF 
measurements on a model with 4 real pickups show a coupling between the UR and DR 
buttons of -45 dB, or 0.6 % at 500 MHz [5]. 

 

 
 

Figure 7: Coupling between UR and DR pickups of a BPM for the undulator chamber. Potential for 
1V applied at the UR button: a: in 2D monitor cross- section; b: along vertical cross-section through 

chamber middle and c: along vertical cross-section through DR pickup. 

Therefore another simulation, taking into account the RF character of the system, has been 
made with Microwave Studio. 

3. RF Simulations 

3.1. Frequency domain simulation: S-parameters 
In order to calculate the coupling between two opposite buttons in the narrow undulator 

chamber described in section 2.3, we model first in Microwave Studio (MWS) [3] two 
pickups in a flat vacuum chamber (Fig. 8-a). We define a waveguide port at the end of each 
antenna. 

The S-parameter for these two ports can then be obtained directly from the simulation. 
The results are shown in Fig. 8-b. S21 at 500 MHz is about -50 dB, in relatively good 
agreement to the RF measurements. 

button  
defined as 

vacuum 

a 

b

c
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Figure 8: a: MWS model of 2 opposite pickups for the BPM for undulator chamber; b: S-parameters 
between the two pickups (normalized to 50 Ohm)  

A more complex simulation of the BPM for the undulator chamber in time domain is 
shown in the next section. 

3.2. Time domain simulation 

3.2.1. Coupling between buttons 
Fig. 9 shows a 3D model of the undulator vacuum chamber with the four BPM pickups. 

The ends of the pickups are defined as ports, while the two ends of the vacuum chamber are 
assigned either electric or magnetic boundary conditions. A Gaussian source is considered at 
port 1. The response at the other ports is then calculated. 

 

 
 

Figure 9: MWS model of the BPM for the undulator chamber for time domain simulations. Each 
pickup ends with a port. A Gaussian source is applied at port 1 (UR). 

a b
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The results of the time domain simulation are shown in Fig. 10. The upper plots (a and b) 
show the transmission parameters to each of the 3 ports, in linear and logarithmic scale. S21, 
the transmission to the opposite pickup, is -45 dB at 500 MHz, in very good agreement to the 
RF measurement. Fig. 10-c shows the exciting current (i1, in red) and the reflection at port 1 
(green). The response at the other ports is shown in plot d. 

 

 
 

Figure 10: Results of the time domain simulation in Fig. 9. a: S-parameters between each of the ports 
in linear scale; b: same in dB; c: exciting current and reflection at port 1; d: response at ports 2-4. 

3.2.2. “Beam” simulation 
A simulation of an electron bunch with Gaussian profile is attempted by using a discrete 

port along a line on the axis of the vacuum chamber (port 5 in Fig. 11). A current source with 
a Gaussian time profile (with amplitude equal to 1) is defined on this line. Note that, unlike 
for a real bunched beam, in the model the current rises and decays at the same time in all 
points of the line. 

b

c d

a 
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Figure 11: “Beam” simulation with MWS. The “beam” is simulated by a discrete port along the axis of 
the vacuum chamber. 

Fig. 12 shows the results of the simulation. The time response at the 4 pickups is shown in 
the left graph (a), while the S-parameters are shown in plot b. Note that the time response is 
not as expected from a real bunch, due to the fact that in our model the current does not 
propagate along the axis. The meanwhile available Particle Studio [6] simulation code can 
overcome this difficulty in future simulations. 

 

 
 

Figure 12: Results of the “beam” simulation. a: time signals at the 4 ports at the pickups; b: S-
parameters. 

4. Summary 
Various BPMs for PETRA3 have been simulated with electromagnetic field codes in 

order to study their behavior. Relatively simple 2D electrostatic simulations with MAFIA 
deliver the monitor constants, and can be used to optimize the geometry of the position 
monitors. The same type of simulations also gives information on the coupling of the button 
pickups to the beam. 

1-4: ports 
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In order to study the coupling between buttons and to simulate the signals generated at the 
pickups by a particle beam, a simulation of the electromagnetic fields has to be made. A 3D 
model of a BPM in a narrow vacuum chamber has been built in Microwave Studio for this 
purpose. The S-parameters between the ports of various pickups have been obtained. A very 
good agreement with RF measurements has been obtained. 

The attempt to simulate a beam by using a current source on a discrete port along the axis 
of the model gave unrealistic result for a propagating bunch. For a more realistic simulation of 
the beam, Particle Studio will be used in future simulation. 
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POSITION MONITORING ON THE ISIS SYNCHROTRON 

B. G. Pine, Rutherford Appleton Laboratory, Oxfordshire, UK

Abstract 
The ISIS Facility at the Rutherford Appleton 

Laboratory in the UK produces intense neutron and muon 
beams for condensed matter research. It is based on a 
50 Hz proton synchrotron which, once the commissioning 
of a new dual harmonic RF system is complete, will 
accelerate about 3.5E13 protons per pulse from 70 to 
800 MeV, corresponding to mean beam powers of 
~ 0.2 MW. Transverse space charge is a key issue for both 
present and proposed upgrades to the machine, and is the 
focus of current R&D studies. Experiments on the ISIS 
ring are central to this work, therefore understanding and 
quantifying limitations in diagnostics is essential. This 
paper presents work studying and modelling the ISIS 
synchrotron beam position monitors. 

INTRODUCTION 
   The ISIS synchrotron has a circumference of 163 m. 
The vacuum vessels are rectangular and have a varying 
aperture, averaging half apertures of roughly 80 by 
60 mm. Beam is accumulated over 130 turns using 
charge-exchange injection, and then formed into two 
bunches during acceleration. Space charge levels are 
especially high during injection and bunching, though still 
have a significant effect when the beam is extracted. The 
ISIS cylindrical split-electrode beam position monitors 
have operated successfully for many years, but higher 
intensity operation and related beam studies are 
motivating a more detailed analysis. 

THEORY  
Proton bunches in ISIS are relatively long, between 30 

and 60 m. With such long bunches, it is assumed that a 
2D electrostatic approximation may be used to calculate 
the position monitor response, as the electromagnetic 
fields are quasi-steady-state for much of the bunch 
passage. The purpose of this work was to test whether a 
2D approximation was valid, using a simulated 3D 
monitor. The effects of high frequency bunch passage, 
and bunch edge effects are likely to also have an effect, 
but are not considered in this paper. 

Laplace’s Equation can be solved in 2 dimensions for 
an off-centre beam in a grounded vacuum vessel [1]. The 
field can also be calculated using images (Appendix A). 
The surface charge distribution on the inner surface of the 
grounded vacuum vessel must produce an electric field 
that cancels this – i.e. is equal to and opposite the beam 
field at the surface. Therefore the surface charge density 
can be calculated if the beam field is known. Making the 
approximation that the electrodes can be treated the same 
way gives this expression for the total surface charge on 
one of the electrodes, including the variation of electrode 
width [2, 3]:  

( )( )2 2
2

1 2 20

1

2 ( )b

Cos R b
Q q L d

R b RbCos
π φ

φ
φ θ

+ −
= −

+ − −∫  

where φ is the polar angle, R is the electrode radius, b is 
the radial displacement of the beam and θ is the angular 
displacement of the beam, qb is the beam charge density 
and L is the electrode half length, as in Figure 1. 

 
Figure 1: Beampipe geometry. 

The solution to this integral is (not obvious, see 
Appendix B): 

1 2 1 [ ]B
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R
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And as [ ]x bCos θ= ,  
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This 2D electrostatic theory predicts that the individual 
electrode signals will be proportional to the position. 
The normalised difference: 

1 2

1 2

Q Q Q x
Q Q Q R

− Δ
= =

+ Σ
. 

Q
Q

Δ
Σ

 is also linear in the displacement, and the gradient 

of the difference-over-sum (DoS) curve is equal to 1/R. 

SIMULATIONS 
ISIS split-cylinder capacitative position monitors have 

been modelled with CST Studio Suite [4], and the results 
compared with the theory discussed above. 

(2)

(1)
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Most of the ISIS monitors are centred around the 
beampipe, and have a rectangular vacuum vessel which 
cuts into their housing, as can be seen in Figure 2. 

 
Figure 2: ISIS position monitor. 

There are other designs, for instance in the extraction 
straight there are larger monitors, which allow for the 
vertical displacement of the beam during extraction, and 
measure in both planes; one of these designs is shown in 
Figure 3. 

 
Figure 3: ISIS synchrotron Straight 1 position monitor. 

 
Figure 4: ISIS position monitor potentials with offset 
beam: surface beam potential normalised to 1V in this 
case. 

    These models were created using perfect conductors to 
form the vacuum vessel and electrodes. The beam was 
made from perfect conductor with a constant potential on 
the surface in early models, and later a volume of constant 
charge density replaced this. The vacuum vessels were 
fixed at 0 V, and the electrodes given a “floating” 
potential which allowed them to vary to fit the 
environment. Electrode potentials calculated by the CST 
Electrostatic Solver were recorded as the beam was 
moved around the transverse plane. Electric boundary 

conditions were used around the vacuum vessel, and 
magnetic at the open end ends of the beampipe. The 
potential distribution for an offset beam with one of the 
standard monitors is shown in Figure 4. 
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Figure 5: (a) Electrode potentials and (b) Difference over 
sum for a vertical monitor. 

A set of results obtained from the CST model 
determined the electrode potential as the beam was 
scanned over both transverse dimensions. Figure 5(a) 
shows the electrode potentials V1 and V2, and Figure 5(b) 
shows the DoS for those potentials.  
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Figure 6: Electrode sum signal for beam position varying 
in both horizontal and vertical planes. 

    As can be seen, the DoS is linear across the whole 
aperture of the monitor, though the individual electrode 
signals are not linear. It was found that the value of the 
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DoS gradient deviated significantly from 1/R. The 2D 
theory assumes that the total charge induced on the 
electrodes (the sum signal) is constant, whereas the 
simulations show that the sum potential of the two 
electrodes also varies with beam position, Figure 6.  
    Another feature was explored by taking one of the 
standard synchrotron monitor models, and stretching the 
longitudinal dimension of the monitor. As the monitor 
was stretched, it’s behaviour grew asymptotically closer 
to the simple theory – the inverse constant of 
proportionality tended to the electrode radius. If a position 
monitor were created infinitely long it would act the same 
way as the 2D theory predicts, see Figure 7. 
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Figure 7: Inverse DoS gradient (R) versus electrode half-
length for a model with electrode radius = 90 mm. 

BEYOND 2D 
    Simple 2D theory describes some of the features that 
the simulations display, such as DoS linearity, but not 
others. Is there some way of extending the simple theory 
so that it is sufficient to describe the monitor fully without 
resorting to simulation? In 1977, J. H. Cuperus wrote a 
paper ‘Edge Effect in Beam Monitors’ [5], in which the 
non-linearities contributed by transitions in the beampipe 
are studied. He concluded that additional grounded 
electrodes should be added at the front and back of the 
monitor. If these guard electrodes are sufficiently long 
then they counter the effect of a transition near the 
monitor, and 2D theory is sufficient to describe the beam 
behaviour, examples can be seen in Figure 8. 

 
Figure 8: Monitors with guard electrodes. 

His paper uses a form of perturbation theory, to iterate 
through improvements for a guessed shape of perturbed 
potential at the beampipe transition. He discovered that 
the answers came in an infinite series, but that most 

elements in the series could be discarded if the guard 
electrodes were sufficiently long. 
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Figure 9: Effect of guard electrodes: Square and Round 
have electrodes the same size as the beampipe, which are 
square and round in shape respectively; SSquare and 
SRound have electrodes smaller than the beampipe; 
LSquare and LRound have electrodes larger than the 
beampipe. 
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    Figure 9 shows the simulated response of a set of 
monitors with guard electrodes. There are 6 variations: 
square monitor in square beampipe with electrodes 
bigger, equal and smaller than the beampipe; and the 
same for a round monitor in a round beampipe. As can be 
seen, the electrode responses are linear for both shapes if 
the electrodes are smaller than or equal to the size of the 
beampipe. Further work could be done here, as it is seems 
possible that longer guard electrodes would make even 
the larger monitors linear. 
    ISIS monitors do not have guard electrodes, and it 
would be troublesome to install them now. There are also 
difficulties repeating Cuperus’s calculation: ISIS monitors 
have a rectangular beampipe going into a larger cylinder 
housing the cylindrical electrodes, which makes the 
geometry more complex. As there is no guard, higher 
order elements in the infinite series solution must be 
considered, and this makes the perturbations very difficult 
to calculate. Still this is an interesting area for further 
study. 

CONCLUSION 
It has become clear that 2D theory is not sufficient to 

account for the behaviour of the ISIS synchrotron position 
monitors. While the behaviour of the difference over sum 
output may well still be linear, the gradient of this line is 
different from that predicted by theory. 

It is apparent that this difference is primarily due to 
transitions in the beampipe shape and size near to the 
electrodes, and could be factored out by including 
sufficiently long guard electrodes in the monitor design. 
As this would be difficult to achieve for the current 
monitors, a possible correction is being considered using 
theory, simulations and experimental verification. 

However, monitors built in the future for ISIS or ISIS 
upgrades would certainly be planned with guard 
electrodes from the beginning. 

 
Figure 10: Monitor simulated with beampipe. 

FUTURE WORK 
    At time of writing the iteration cycle that Cuperus used 
has been recreated, but there is still a great deal of 
uncertainty about applying the method to the ISIS 

monitors. Simultaneously then, another set of simulations 
are running in CST, to take more account of the beampipe 
environment near the monitors, see Figure 10. 
    Work studying the effects of high frequency bunch 
passage through the monitors is also anticipated, both 
using CST Microwave Studio, and with further analysis. 
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APPENDIX A: IMAGE METHOD 
    The electric field parallel to the beam pipe boundary 
must be zero, and the electric field perpendicular to it 
must be proportional to the surface charge. Assume there 
is another line charge with the opposite charge to the 
beam, situated outside the cylinder, a distance l from the 
axis, see Figure 11. 

 
Figure 11: Beampipe geometry with images. 

    We try to satisfy the boundary condition on the surface 
such that // 0E Eφ= = . 
The beam field: 
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Then using this result, we find the field perpendicular to 
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Which is equal to the surface charge distribution on the 
inside of the cylinder. This equation for the total surface 
charge is called the Poisson Integral: 
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APPENDIX B: SOLUTION TO EQUATION 
[1] 
    Equation (1) combines the Poisson equation with the 
electrode width and can be solved using complex 
analysis. Many thanks to C. R. Prior for the solution [6]. 
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This equation has poles at 0R = , R b=  and 
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= , but only the first two are correct as 
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HIGH RESOLUTION RE-ENTRANT BPM FOR LINEAR COLLIDERS 

C. Simon#, S. Chel, M. Luong, O. Napoly, J. Novo, D. Roudier, CEA-Saclay, Gif sur Yvette, France 
N. Baboi, D. Noelle, N. Mildner, DESY, D-22603 Hamburg, Germany                                           

N. Rouvière, CNRS-IN2P3-IPN, Orsay, France 

Abstract 
A high resolution beam position monitor (BPM) is 

necessary for the beam-based alignment systems of high 
energy and low emittance electron linacs. Two monitors 
with a large aperture (78 mm) are installed in the FLASH 
linac at DESY: one inside a cryomodule and the other at 
room temperature in a clean environment. The 
mechanical and signal processing designs of this BPM 
were determined to get a high position resolution and the 
possibility to perform bunch to bunch measurements. 
Methodology, simulations and experimental results will 
be discussed in this paper. 

INTRODUCTION 
A BPM based on a radio-frequency re-entrant cavity is 

developed in the framework of the European CARE/SRF 
programme, in a close collaboration between DESY and 
CEA/Saclay. A first prototype of a re-entrant BPM 
installed inside a cryomodule in the FLASH linac has 
already delivered measurements [1]. A second system is 
installed at room temperature to confirm the theoretical 
analysis. The RF simulations carried out with the software 
HFSS and the development of a Mathcad model 
determined the mechanical design and signal processing 
of this BPM. 

CAVITY BPM 

Mechanical design 
The re-entrant cavity BPM is composed of a 

mechanical structure with four orthogonal feedthroughs. 
It is arranged around the beam tube and forms a coaxial 
line which is short-circuited at one end [2]. The cavity 
(Fig. 1) is fabricated with stainless steel, its aperture has a 
diameter of 78 mm and its length of 170 mm is minimized 
to satisfy the constraints imposed by the cryomodule.  

 
Figure 1: Re-entrant cavity BPM installed in the FLASH 

linac. 

Twelve holes of 5 mm diameter were drilled at the end 
of the re-entrant part for a more effective cleaning. The 
position of feedthroughs was determined by simulations 
with the software HFSS, to reduce the magnetic loop 

coupling and separate the main RF modes (monopole and 
dipole modes). Several cryogenic and vacuum tests were, 
successfully, applied to feedthroughs. For each antenna, a 
CuBe RF contact is welded in the inner cylinder of the 
cavity to ensure electrical conduction between the 
feedthrough and the cavity, providing a magnetic 
coupling loop. 

RF characteristics of the cavity BPM 
The resonant cavity was, first, simulated with the 

software HFSS (Ansoft) in eigen solver mode to 
determine its frequencies and coupling. The simulations 
were carried out with HFSS on a half of the cavity. The 
electrical and magnetic fields are high in the re-entrant 
part. With Matlab and the HFSS calculator, the R/Q ratio 
was computed in using the following equation (R: the 
Shunt impedance and Q: quality factor).  
 
      (1) 
 
 
With          and 

 
where  k= w/c  and W is the stored energy in the mode. 

Q factors were determined by HFSS with matched 
feedthroughs in eigen solver mode. The RF 
measurements, presented in Table 1, compare some 
computed quantities to measured values. The frequencies 
and coupling measurements of the main RF modes 
(monopole and dipole modes) were carried out to check 
the proper mounting of feedthrough on the cavity. The 
difference on Q factors can be explained by the boundary 
conditions which are not the same during the 
measurements in laboratory and in the tunnel. 

Due to the finite tolerances in machining, welding and 
mounting, some small distortions of cavity symmetry are 
generated. The dipole mode orthogonal polarizations 
show slightly different eigenfrequencies; the relative 
difference was measured and is, however, less than 2 per 
1000. Furthermore, a displacement of the beam in the ‘x’ 
direction gives not only a reading in that direction but 
also a non zero reading in the orthogonal direction ‘y’. 
This asymmetry is called cross talk. Cross-talk isolation 
measurements are performed on the cavity with a network 
analyzer [3]. The crosstalk was measured in the FLASH 
tunnel to be around 33 dB instead of 41 dB measured in 
laboratory. This difference is not yet understood but it 
may be explained by the fact that the BPM has a 
rotation/tilt (11.25 degrees) with a button BPM which is 
very close. 
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Table 1: RF characteristics of the re-entrant BPM. 

The transmission measurement on two opposite 
antennas was completed in the 1 to 4 GHz range (Fig. 2). 

 
Figure 2: Transmission measurement on the opposite 

antennas without beam 

The first and second peaks are the monopole and dipole 
modes. Others peaks are higher order modes which can 
propagate out of the cavity through the beam pipe. Those 
‘higher order modes’ should be well rejected by a 
1.72 GHz band pass filter used in the signal processing. 
This filter was measured in laboratory, at 3 GHz, its 
attenuation is around -70 dB and around -60 dB at 4 GHz. 

SIMULATION 

Mathcad Model 
To assess the performance of the system, a model 

(cavity+signal processing) is elaborated with a Mathcad 
code based on Fourier transforms. The simulation covers 
a span from 0 to 20 GHz. Each mode of the cavity is 
modelled as a resonant RLC circuit. The delivered time 
domain signal is therefore determined by the RF 
characteristics of each mode (Equation 3). The single 
bunch response of the cavity depends on frequency wi and 
external coupling Qi of the modes. The signal from a 
pickup is the sum of all resonant modes excited by the 
beam. 
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where Φ(t) is the heaviside function, q the bunch charge, 
R0 the 50 Ω cable impedance, R/Qi defines the coupling 
to the beam and ζi = 4 if it is a monopole mode or ζi = 2 if 
it is a dipole mode.  

The signal processing uses a single stage down-
conversion to obtain Δ/Σ and is shown in Fig 3. 

 
Figure 3: RF signal processing electronics 

As the signal from the monopole mode does not depend 
on the beam position, the rejection of the monopole mode 
is necessary and is carried out in three steps [3]. 

To simulate the signal processing, the transfer functions 
of different components are used.  

The model of the 180° hybrid couplers composing the 
signal processing is derived from the network analyzer 
measurements [4]. Its isolation is higher than 20 dB in the 
band 1-2 GHz. A local enhancement of the isolation can 
be obtained with adjusting of the phase and attenuation to 
have a better rejection of the monopole mode. The 
transfer function of cables (Hc) takes into account the 
effect of attenuation and dispersion. The “sum” signal 
peak power was measured around 36 dBm and the “sum” 
peak power simulated with the Mathcad model is around 
34 dBm. Those values are close, the Mathcad model can 
be, therefore, validated.  

The band pass filter with a 110 MHz bandwidth centred 
at 1.72 GHz provides a monopole mode rejection and a 
noise reduction. Its transfer function is given by a CAD 
code. The local oscillator (LO) signal is modelled by a 
sine wave at the dipole frequency with 1 Volt amplitude. 
To carry out the synchronous detection, a phase shift is 
added to put in phase the LO signal and the RF signal 
(without monopole mode) from the Δ channel. Follows a 
50 MHz lowpass filter, which the transfer function is 
given by the same CAD code. The output signal of the 
signal processing (Fig 4) is, then, sampled at the peak for 
a significant beam offset, around 1 mm. 

Eigen 
modes 

F (MHz) Qext R/Ql (Ω) 
at 5 mm  

R/Ql (Ω)  
at 10 mm 

 Calculated Measured 
in lab. 

Measured 
in the 
tunnel 

Calculated Measured 
in lab. 

Measured 
in the 
tunnel 

  

Monopole 
mode 

1250 1254 1255 22.95 22.74 23.8 12.9  12.9  

Dipole mode 1719 1725 1724 50.96 48.13 59 0.27 1.15 
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Figure 4: Output signal from the Δ channel. 

Results 
The position resolution is the rms value related to the 

minimum position difference that can be statistically 
resolved. The noise is determined by the thermal noise 
and the noise from signal processing channel [3]. The 
signal is given by the model (cavity+signal processing). 
The gain was adjusted to get an RF signal level around 
0 dBm on the Δ channel with 100 μm beam offset. The 
noise level is about 0.4 mV. In using those parameters, 
the position resolution is around 350 nm [4].  

One of the most important parameters for a BPM is the 
time resolution. It is usually identified to the damping 
time which is around 9.5 ns for the re-entrant cavity. 
Nevertheless, considering the whole system, the time 
resolution is around 40 ns [3], since the rising time to 
95% of a cavity response corresponds to 3τ. 

FIRST BEAM TESTS  
Summer 2006, the two subsystems, composing the 

signal processing, were installed and calibrated. The 
adjustment of phase shifters allows having a high 
common mode rejection (30 dB at the monopole mode 
frequency). The synchronous and direct detectors, as well 
as amplifiers and limiters for protection were adjusted to 
have a linearity range around +/- 10 mm. 

After the electronics calibration, the first tests with 
beam were carried out. The aim of this first calibration 
was to know the measurement dynamic range and no to 
have a high resolution. As the re-entrant BPM is mounted 
with a tilt angle of 11.25° with respect to the horizontal 
direction, a frame rotation change, done by software, was 
necessary. Figure 5 shows that the re-entrant BPM has, on 
the X and Y channels, a good linearity in a range 15 mm 
but there is an asymmetry and the linearity is better for a 
positive deviation. This effect is not yet well understood. 

 
Figure 5: Calibration results in LINAC frame from 

horizontal (left) and vertical (right) steering 

The standard deviation of the calibrated position 
measurement (fig. 6) was plotted for the horizontal and 
vertical steering. 

 
Figure 6: Standard deviation of the position measurement 

(calibrated) 

The raw RMS resolution of the system directly 
measured by the standard deviation of the readings from 
the re-entrant BPM can reach 20 µm on the X channel and 
around 40 µm on the Y channel, at the BPM centre. But 
those results depend on the beam jitter, too. With 
simulations, the resolution of this system was determined 
around 15 µm. 

OUTLOOK 
For the next beam measurements, the resolution will be 

studied. The mixer used in the electronics will be replaced 
by a new one which accepts a high power RF input 
(around 17 dBm instead of 0 dBm). Some attenuators will 
be removed to change the gain and improve the 
resolution. Table 2 shows the re-entrant BPM simulations 
with the new mixer and 10 mm beam offset. 

Table 2: Resolution estimated with the new mixer and  
10 mm beam offset. 

 Resolution (µm) 

75m cables and RF signal level 
around 12 dBm on the Δ channel 

1.3 

33m cables and RF signal level 
around 17 dBm on the Δ channel 

0.7 

With this layout, the resolution of the re-entrant BPM 
should be around 1 µm with a measurement dynamics 
range around +/- 10 mm. 

CONCLUSION 
This BPM is designed to be used in a clean 

environment, at cryogenic or room temperature. Its main 
features are a large aperture (78 mm) and an excellent 
linearity. The time resolution is around 40 ns and the 
theoretical resolution is around 1 µm with a measurement 
dynamics range better than +/- 5 mm. The preliminary 
measurements on the BPM show a very good agreement 
with the theoretical analysis. This BPM appears as a good 
candidate for being installed in the XFEL and ILC 
cryomodules. 

20 ns  
20 mV 

40 ns 
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CERN LINAC4 Stripline signals 
by L. Soby, CERN 

 
For the future Linac4 at CERN the measurement of position, intensity and phase of low beta H- 
beams are foreseen using either button BPMs or shorted stripline BPMs. The very small available 
space limits the choice of BPM type.  At low relativistic beta the transverse sensitivity of a stripline 
BPM varies with beta and frequency and must be taken into account, as shown  by R. Schafer.  
 

 

 
 
 
Present 3D electromagnetic field solvers does not consider low beta beams and the question was 
how to simulate low beta beams. A new Microvawe Studio package now gives the possibility for 
simulating low beta beams." 
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4th CARE-Meeting HHH-N3-ABI in Lüneburg, Germany 
 

Simulation of BPM front-end electronics and Special Mechanical Designs 
 
 

1st half day:   BPM sensor technology – simulation tools and results 
Chair: Andreas Peters, GSI 
 
 
Invited Talks: 

1. BPM simulations for the FAIR SIS100 synchrotron with Microwave Studio 
Piotr Kowina, GSI 

2. EM Simulations for PETRA3 
Nicoletta Baboi, DESY 

3. ISIS Position Monitoring  
Ben Pine, RAL 

4. High resolution BPM for Linear Colliders 
Claire Simon, CEA 

5. Cold Cavity BPM R&D for the ILC  
Manfred Wendt, FNAL 

 
 
Main remarks in the discussions: 

• Talk 1: Prevent high voltages by introducing additional capacitance, 
inductance, respectively low pass filtering 

• Talk 1: Justification for the design? Is a stripline an alternative? One reason for 
the chosen design is the broad shape of the beam causing a lot of problems 
with non-linearities, which have to be solved. 

• Talk 2: Discussion about simulation of beam through a wire with discrete ports 
in Microwave Studio (problems: reflections at ports), demand of the upcoming 
Particle Studio, introducing a real particle beam simulation; already 
implemented in MAFIA T3, but much more complicate to use than Microwave 
Studio and the needed computer power is very high 

• Additional comments from Piotr Kowina and Lars Soby (see their 
transparencies) 

• Talk 3: 2D theory (e.g. by Bob Shafer, 1989) is just good for understanding the 
basics describing infinite long monitors, but real devices are 3D, causing a lot 
of differences to 2D theory 

• Talk 4: Reasons for asymmetry of the results discussed, additional simulations 
with (always unavoidable) mechanical tolerances demanded; discrepancy 
between the simulated resolution and measurement results will be 
investigated; mechanical set-up and further developments are discussed to 
enhance the alignment 

• Talk 5: Discussion about different coefficients of expansion (copper, ceramics) 
and danger of breaks in the actual design (in total 8 feed-throughs per cavity 
BPM), testing in next future is foreseen 

• Short summary: Different simulation codes are on the market: MAFIA, 
Micowave Studio, HFSS, etc., in addition self-written codes in Matlab, 
MathCAD and others, contact authors for detailed information 
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Cold Cavity BPM R&D for the ILC 

Manfred Wendt 

Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.
1
 

Abstract. A cold L-Band cavity BPM for installation in a SCRF cryomodule is currently 

under development at Fermilab. The BPM has to meet the ILC BPM specifications, i.e. < 1 

µm single bunch, single pass resolution, going along with sufficient accuracy and 

reproducibility. Real estate limitations and the superconductive RF environment require 

some special considerations for this design. 

INTRODUCTION 

 

 

FIGURE 1.  Layout of the International Linear Collider (ILC). 

 

A 500 GeV center-of-mass (CM) International Linear Collider (ILC) is 

currently under study as the next large particle accelerator for high energy physics 

(HEP) to test “Mother Nature’s” laws. Hearts of the machine are two ~ 10 km long 

superconducting RF main linacs, providing the required beam energy (see Fig. 1). 

A crucial point is beam transport through the main linacs, i.e. preserving its low-

emittance, in order to achieve the luminosity goal. Table 1 gives an overview of 

the ILC beam parameters, showing a vertical emittance of ~ 0.04 mm mrad, which 

is equivalent to a 5 nm (!) vertical beam size at the IP. Particle tracking studies of 

the main linac lattice, using different orbit correction methods, pointed to the need 

of a high resolution beam orbit measurement. In order to preserve the emittance, 

and therefore the luminosity, to a > 90 % level, the resolution requirement of the 

beam position monitors (BPM) is well below 5 µm. For diagnostics purposes, i.e. 

to find sources of beam jitter, fluctuations and other problems, we have to be able 

to detect beam displacements in the order of a fraction of the nominal transverse 

beam size. Therefore a single bunch (bunch-by-bunch, measurement time < 369 

ns) resolution < 1 µm is required for the main linac BPMs. 

 

                                                 
1 This work was supported by Fermi National Accelerator Laboratory, operated by Universities Research Association Inc. 

under contract No. DE-AC02-76CH03000 with the United States Department of Energy 
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TABLE 1.  ILC beam parameters (nominal). 

beam energy = 2 x 250 GeV 

luminosity L = 2 x 10
34

 

rep. frequency frep = 5 Hz 

macro pulse length tpulse = 800 µs 

bunch spacing Δ tb  = 369 ns 

bunch charge = 3.2 nC 

bunch length σz = 300 µm 

vert. emittance γ εy
*
  = 0.04 mm mrad 

RMS energy spread = 0.1 % 

βx
*
 (IP) = 21 mm 

Βy
*
 (IP) = 0.4 mm 

hor. beamsize (IP) σx = 500 nm 

vert. beamsize (IP) σy = 5 nm 

 

 “COLD” BEAM POSITION MONITORS FOR THE ILC 

Table 2 shows an overview of the major beam instrumentation systems needed 

in the different ILC accelerator areas. The beam position monitors (BPM) are the 

most complex, while also most important distributed beam instrumentation system 

in the ILC accelerator complex. About 600, of a total of ~ 4000 BPMs, are located 

inside every 3
rd 

cryomodule, flanged to a superconducting quadrupole magnet 

package; these “cold” BPMs are used in the Main Linac (ML) and in the Ring-To-

Main-Linac (RTML) areas. Along the ~ 10 km Main Linac the BPMs are almost 

the only beam instrumentation, therefore they are a key component to diagnose 

problems and errors. 

The requirements for the cold BPMs are very specific, also because of their 

neighborhood to the superconducting 1.3 GHz RF cavities: 

 A real estate of ~ 170 mm length and 78 mm circular beam pipe aperture 

is given. 

 The BPM has to operate in a cryogenic environment (~ 4 K). 

 A cleanroom class 100 certification is required, because of the nearby 

superconducting cavities. 

 The BPM has to operate in ultra-high vacuum (UHV). 

 A single bunch (bunch-by-bunch, i.e. < 350 ns measurement time) 

resolution of < 1 µm is required to preserve the vertical emittance along 

the Main Linacs. This high resolution will also enable the use of the 

BPMs for troubleshooting and diagnostics e.g. spot sources of beam 

jitter. 

  The absolute alignment error between electrical center of the BPM and 

magnetic center of the corresponding quadrupole should be < 200 µm. 

Related issues to the cold BPM pickup are the cold RF feedthroughs, the RF 

cabling inside the cryostat and the read-out system for the pickup signals. 
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INSTRUMENT  
requirements                  
(e.g. resolution) 

ILC ACCLELRATOR AREA 

e
-
-

source 

e
+
-

source 
DR RTML ML BDS 

Button/stripline BPM 
10…30 µm (e

-/+
-source) 

<0.5 µm averaged (DR) 

69 400 
2x747 

 
   

Cavity BPM (warm) 
< 0.1…0.5 µm (C, S-Band) 

1…5 µm (L-Band) 
 

109 

(C) 
 

2x649 (C) 

2x27 (L) 
 

42 (L) 

14 (S) 

262 (C) 

Cavity BPM (cold) 
~0.5…2 µm (L-Band) 

   2x28 2x280  

Laserwire 
~ 10 % of tr. beam size 

(0.05…0.5  µm)        
8 20 2x1 2x12 2x3 8 

DMC 
dE~0.01% / sz~100 µm 

(< 1 µm) 
3 4  2x2  2 (cold) 

Beam phase monitor 
0.01

0
(BC)…0.1

0
@1.3GHz 

4 2  2x3   

Wirescanner 12 8     

Beam current monitors 
0.5…1 % of bunch charge 

7 11 2x1 2x2 2x3 10 

Optical monitors 6 17 2x2 2x8  11 

BLM (PMT/IC) 
< 0.01 % of total beam int. 

60/2 400/20 2x40/4 2x25/2 2x325/10 100/10 

Feedback systems 5 10 2x2 2x1 2x10 12 

Table 2: Counts of beam instrumentation system installations in the ILC accelerator complex, 

along with some basic requirements (DR: Damping Rings, RTML: Ring-To-Main-Linac areas, ML: 

Main Linacs, BDS: Beam Delivery System). 

 

A “COLD” CM-FREE CAVITY BPM FOR THE ILC 

There are basically two possible ways to approach the cold BPM requirements 

of the ILC: 

 A dedicated, high resolution BPM based on a common mode (CM) free 

dipole mode cavity BPM pickup (baseline design). 

 The use of a simple, button-style BPM pickups of low or moderate 

single bunch resolution in combination with a signal processing scheme 

of a beam excited dipole mode on the higher-order mode (HOM) 

couplers, offering a high resolution BPM measurement (alternative 

design). 

Other ongoing cold BPM developments include a modified re-entrant coaxial 

cavity BPM (CEA-Saclay), as well as a CM-free S-Band dipole mode cavity BPM 

with reduced aperture (~ 35 mm) (SLAC). 
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Cavity BPM Principle 

A cylindrical “pillbox” having conductive (metal) wall dimensions of radius R 

and length l resonates at eigenfrequencies:  

 

This resonator can be utilized as passive, beam driven cavity BPM by 

assembling it into the vacuum beam pipe. A subset of these eigenmodes is excited 

by the beam, for use as BPM the lowest transverse-magnetic dipole mode TM110 is 

of interest. Its  

  

field component couples to the beam, with almost linear dependence to the beams 

displacement r, and beam intensity (hidden in the constant C). 

 FIGURE 2.  Principle of a “pillbox” cavity BPM. 

 

As Fig. 2 illustrates, the TM110 dipole mode vanishes as the beam moves exactly 

through the center of the cavity pickup (r = 0). A set of capacitive coupling pin-

antennas can be used to sense this dipole mode displacement signal of frequency 

f110. Compared to broadband BPM pickups, e.g. button- or stripline style, the 

strength of the beam excited eigenmode is due to the cavity shape. For a simple 

cylindrical cavity BPM the corresponding Rsh/Q (shunt impedance over Q-value) 

typically has much higher values, compared to the transfer impedance of a 

broadband BPM, i.e. has higher beam displacement sensitivity and therefore a 

much greater potential to work as a high resolution BPM. 
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 Unfortunately this simple, basic pillbox cavity BPM setup has several issues, 

which have to be addressed for a practical implementation: 

 Common modes: Fig. 2 further illustrates that monopole modes (in 

BPM applications often called “common” modes, as they are 

independent from the beam displacement, thus always present) are also 

excited by the beam – here shown the fundamental TM010 eigenmode. 

The finite Q-value generates an unwanted contribution of this 

fundamental, high level TM010 monopole mode at f110 of the dipole 

mode. As the ILC BPMs have to time resolve every passing bunch, the 

Q-value of the resonator has to be chosen in a way that the stored energy 

doesn’t last longer than the bunch-to-bunch time interval (~ 350 ns). In 

practice this requires rather low Q-values (500…1000), thus would 

result in a high monopole mode contamination at the dipole mode 

frequency (Fig. 2 upper-right plot). 

 Cross talk: In an ideal cylindrical cavity the polarization axes of the 

dipole and other higher modes are undefined. Fig. 2 shows the vertical 

polarized part of the TM110 dipole mode, thus functioning as horizontal 

BPM. Every dipole mode has two polarization axes, which in practice 

align to small imperfections of the circular cross-section, or to the 

feedthrough pin-antennas, etc. In case of larger asymmetries the 

frequencies of the two polarizations may be not exactly the same. To act 

as a usable BPM both polarization axes of the cavity BPM have to be 

aligned to the horizontal/vertical plane within the specified tolerances. 

Without special considerations a simple pillbox cavity BPM may have 

somehow undefined polarization axes, which results in so-called “cross 

talk” effects between horizontal and vertical planes. 

 Transient response: As already mentioned, the loaded Q-value has to 

be low enough to time resolve the beam position of every passing bunch, 

i.e.  

Ql ~ 500…1000. In case of the simple pillbox cavity BPM, made out of 

copper or equivalent, the unloaded Q-value Q0 usually is rather high if 

made out of high. As the pin-antenna loading does not lower the Q-value 

substantially, either very unusual dimensions have to be realized (very 

short gap), or a less conductive material has to be used, e.g. stainless 

steel. Both ways have disadvantages, particular the second: 

 Wakepotetial and heat-load:  All undamped, beam excited modes in 

the cavity BPM increase the wakepotential. Higher order modes may 

cause beam breakup and kick effects, trapped monopole and other 

modes mainly contribute to an unwanted heat load in the cryomodule, 

which is particular high when using lossy conductors as cavity walls. 

Beside these issues the cavity BPM located in the cryomodule has to fulfill 

special cleanroom and vacuum requirements. Both, magnitude and phase, of the 

dipole mode signal have to be processed, the magnitude represents the 

unnormalized beam displacement, the phase gives the sign. To perform a calibrated 

beam position measurement the dipole mode signal furthermore has to be 

normalized to the beam current (or bunch charge).  
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The Common-mode Free Cavity BPM 

 
FIGURE 3.  Waveguide-loaded CM-free cavity BPM (courtesy of Sean Walston). 

 

The total suppression of the TM010 common mode is the key to realize the full 

resolution potential of a cavity BPM. This can be realized by arranging a set of two 

or four rectangular waveguides, coupled to the cavity (see Fig. 3). The waveguide 

acts as a very effective high-pass filter between the cavity and the coaxial output 

port, utilizing a TE10 waveguide-mode cutoff frequency: 

 

Dimensioning the longer side a of the waveguide’s cross-section such that its TE10  

cutoff frequency is well between the f010 monopole mode and the f110 dipole mode 

frequencies of the cavity, will almost vanish the monopole mode contribution at 

the dipole mode frequency. The coupling slots for the waveguides in the cavity 

also help to align the polarization axes horizontally and vertically.  

CM-free cavity BPM’s with various coupling schemas between cavity and 

waveguides, waveguide arrangements and geometries have been tested at various 

laboratories. Most impressive results have been demonstrated at the nanoBPM 

collaboration. By using a set of 3 CM-free C-Band cavity BPMs in a hexapod 

spaceframe at the KEK Advanced Test Facility (ATF), a resolution < 20 nm could 

be achieved! 

 
FIGURE 4.  CM-free S-Band cavity BPM (courtesy of Zenhai Li). 
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For the practical realization of a cold cavity BPM in a superconducting RF 

environment, the additional waveguides appear to be a major problem for the 

cleaning procedure. Fig. 4 shows a prototype S-Band cavity BPM, addressing this 

problem by opening the waveguides towards the beam pipe to improve the 

accessibility for the cleaning procedure. A set of three S-Band cavity BPM’s where 

tested with beam at the SLAC Endstation A (ESA), demonstrating a single bunch 

resolution < 1 µm. However, a detailed EM analysis shows a strong quadrupole-

like parasitic mode below the TM010 frequency under certain beam conditions. 

Cold L-Band Cavity BPM Development 

 FIGURE 5.  Cold L-Band cavity BPM development. 

 

A cold L-Band cavity BPM (Fig. 5), currently at Fermilab under development, 

tries to address most of the mentioned problems: 

 CM-free design using narrow waveguides to couple out the dipole mode 

signals. 

 A ceramic filled slot-window utilizes a Ql ~ 600, and also addresses the 

cleaning issues. 

 Pin-antennas used to couple to the monopole mode signals, used for 

normalization and phase information. A non-matched signal combiner in 

combination with transmission-lines realizes an in-phase loading at the 

monopole mode frequency, while not loading at the anti-phase dipole 

mode frequency. 

 The monopole mode frequency f010 and the dipole mode frequency f110 

are chosen symmetrically to the accelerator frequency fRF, which is 

foreseen to act as precise, jitter-free LO frequency reference. 

 Tuning dimples at the cavity rim allow minimizing the 

horizontal/vertical cross-talk. 
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FIGURE 6.  Brazing test and temperature cycling. 

 

An experimental setup was used to study the brazing of the ceramic into the slot 

window, and testing the vacuum certification after several 77 K temperature cycles 

(Fig. 6). Even though only one of four windows survived all temperature cycles, 

we could acquire important information and experience with these experiments to 

further improve and optimize construction details. 

From the EM simulations a computed dipole mode shunt impedance (Rsh/Q)110 ~ 

14 Ω (for 1 mm beam displacement) promises a sub-micrometer single bunch 

resolution. Fig. 7 shows a 3D view of the cold L-Band cavity BPM assembly at the 

current construction status. Most parts will be manufactured using OFHC copper. 

To reduce the deformation due to the atmospheric pressure a “rip” structure will be 

used to mechanically strengthen the cavity disks. UHV N-type RF feedthroughs 

with pin-antennas, mounted under 90
0
 on the cavity disk, are used to couple to the 

monopole mode signals. Higher order mode signals are suppressed with filters in 

the read-out system. Standard N-type feedthroughs are used on the waveguide as 

waveguide-to-coaxial transition for the dipole mode signals. Several brazing 

processes at different temperatures are needed to assemble the complete unit. Next 

steps in the development are: 

 A vacuum experiment to study the eigen-frequency shift due to the 

deformation of the cavity disks. 

 A complete prototype assembly has to be manufactured and undergo a 

complete test series, including vacuum tests and temperature cycles. 

 A network-analyzer based RF characterization and calibration has to be 

performed. 

 The final prototype BPM has to undergo several cleaning procedures to 

meet the cleanroom class 100 specification. 
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FIGURE 7.  Cold L-Band cavity BPM assembly. 

 

Finally the goal is the installation of a prototype cavity BPM in a cryomodule, 

to be used at the NML linac test facility, currently under construction at Fermilab.   
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Abstract

This article is a slightly extended version of the corre-
sponding presentation at the CARE Workshop in Novem-
ber 2006 which describes the first experiences in using the
free software simulator Qucs and a Gnucap/Python based
simulation system for BPM electronics.

Transient pulse and noise generators are created with
python scripts. Simple BPM SNR calculations are done
by simulating filters with spice and preprocessing the re-
sults with python. Simulations of AM/PM detectors and
detectors for the Delay Multiplex Single Path Technique
are shown.

1 Which Software to Use?

DESY decided to join the Open Access Movement for Ar-
ticles and Documentation. There is no essential difference
between Articles and Software. The tax payer’s money
saving argument can be applied to the software selection
criteria, too. Although the Free Software Community em-
phasizes on the philosophical and political aspects offree,
the economic relevance offreeshould not be neglected at
least as far as the tax payers are concerned.

Is there free software available which is suitable for do-
ing efficient simulations?

1.1 Some Free Software Circuit Simulators

1.1.1 Spice based Simulators

Berkeley Spice The mother of circuit simulation. Fully
working. 1

Spice Opus is based on Berkeley Spice 3f4. Fully work-
ing.

Ngspice is based on Berkeley Spice 3f4. Full working.

TclSpice is based on Berkley Spice. Uses Tcl/Tk as
scripting langugage.

1.1.2 Non spice based simulators

eispice is a ground-up re-write of a simulation enginge
similar to Berkeley Spice 3. Aims to be a lot faster
than Berkeley Spice. Eispice uses Python as script-
ing language. Semiconductor Models are still miss-
ing.

Gnucap is not based on Berkeley Spice. Interactive use
is a bit more comfortable than Berkeley Spice.

1PSpice is based on Berkeley Spice2

Qucs includes a GUI and functionalities similar to ADS,
Microwave Office and other contemporary, comer-
cial simulation tools. Qucs is currently in heavy de-
velopment. The outlook is very promising.

1.2 Other Free Software Tools for Simula-
tion

Python is a universal scripting language for rapid Soft-
ware prototyping, simulations, signal processing,
measurement automation, hardware description lan-
guage (FPGA programming) ...

Cascadeanalyzes noise and distortion performance of
cascaded elements in electronic systems.

Meep is a finite-difference time-domain simulation soft-
ware developed at MIT. It uses Scheme as input lan-
guage.

Camfr Cavity Modelling Framework using Python as in-
put language.

Octave is similar to Matlab.

SciLab is also similar to Matlab - but the syntax is differ-
ent.

Ptolemy Graphical system simulator2.

There are much more free simulation tools.

2ADS is at least partially based on Ptolemy
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2 Using Python as Simulation
Scripting Language

Python[1] is one of the standard scripting languages.
Ports exist for virtually any machine. It is used for:

• Web and Internet Development

• Network Programming

• Database Access

• Desktop GUIs

• Rapid Prototyping

• Signal Processing

• Measurement Automation

• Hardware Description Language

• . . .

2.1 Python is frequently used in High En-
ergy Physics

KEKB Injector LINAC GUI and numerical data processing

CERN LHC The webpage says:

Python combines remarkable power with very clear syntax.
[. . . ] Python is also usable as an extension language for
applications that need a programmable interface.

CERN The EuroPython Conference 2005 and 2006 was held
at CERN and an article about it appeared in CERN
COURIER.

CERN ROOT The ROOT Data Analysis Framework has a
Python interface. [7]

SLAC Data acquisition system for GLAST.

DESY Also at DESY Python is used on some places.

2.2 Python User Interface

Python is in a manner of speaking an interpreter language.
It not only interpretes script files but has also an interac-
itve command line interface to directly type in the com-
mands.

There exists an Python extension called IPython with
enhanced functions for interactive use, i.e. intelligent his-
tory.

2.3 Python for Numerical Computation

Python has builtin complex number support. Also the easy
to use object orientation gleams slightly in the following
example.

>>> Z=50+30j

>>> print Z

( 50+30j )

>>> Z. imag

30.0

>>> Z. real

50.0

>>> A=Z. conjugate()
>>> A

( 50- 30j )

>>> A* Z

( 3400 +0j )

2.4 Python Addons for Numerical Compu-
tation

There exist some libraries for vector and arrays. TheNu-
meric library from theScipy project is one of the most
used.

>>> from Numeric import *

>>> u=array ([ 1.0 , 1.5 , 2.0 , 2.5 ])

>>> i =u/ 50

>>> i

array ([ 0.02 , 0.03 , 0.04 , 0.05 ])

2.5 Plotting with Python

Matplotlib is one of the most used plotting packages for
Python. It provides also interactive graphical user inter-
face.

As ROOT [7] has a Pyton interface it could be used for
plotting, too.3

>>> from pylab import *

>>> t =arange( 2* pi , 0.1 )

>>> u=sin( t )

>>> plot( t , u)

Figure 1: Python Plot Graphics

3Unfortunately the authors have no experience using ROOT, yet.

450



3 Simulation of AM/PM Converter
with QUCS

Figure 2: QUCS Graphical User Interface

Qucs [5] is free software simulator consisting of a
graphical user interface and an also seperately comman-
dline usable simulator engine.

The graphical user interface of Qucs is similar to ADS,
Microwave Office and other contemporary comercial RF
simulation tools. Unfortunately it is not possible to ex-
port Qucs schematic and import it to those commercial
programms.

The pickup cambrel pulse is here simply simulated by
combining two narrow pulse voltage sources4. Due to lim-
itations in Qucs the position sweep is realized by simply
increasing the voltage at one input.
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Figure 3: AM/PM Converter Test Circuit
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Figure 4: AM/PM-Converter Circuit

3.1 AM/PM-Converter Circuit

3.2 Positionsweep of AM/PM Converter
with QUCS
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Figure 5: AM/PM Converter Position Sweep

QUCS 3D output looks nice. But at the time of that
simulations the plotting code was buggy and documen-
tation rudimentary. Therefore the further plots are done
usingPython andMatplotlib .

The spikes in figure 7 are due to bugs in qucsator, the
simulation engine of Qucs.

3.3 QUCS Summary

• The current Qucs version (0.09) is a bit buggy.
Newer version behaves much better

• The GUI has the well-known general drawbacks of
GUIs. 6

• Qucs does not provide a piecewise linear source.

4Qucs 0.09 does not provide a piecewise linear voltage source
5Disadvantage of GUIs: You need to fiddle with positioning of a lot

of items on the canvas.
6GUIs are bad to your health.
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Figure 6: AM/PM Converter Output Voltage vs. Position
and Time

Figure 7: AM/PM Converter Output Voltage vs. Position
and Time
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4 BPM Circuit Simulation with
Spice/Gnucap and Python

4.1 Spice or Gnucap, which is better ?

Pro Spice - contra Gnucap

• Spice3f allows alphanumeric netnames - Gnucap like
Spice2 accpets only numeric netnames

• Spice is more frequently used and hopefully less
buggy

Pro Gnucap - contra Spice

• Gnucap has a better user interface

• Gnucap has additional features

4.2 Python Wrapper for Gnucap

gnucap.py provides interactive and batch mode control
of gnucap within python. The advantages are:

• on the fly automated circuit building and modifica-
tion

• processing the gnucap simulation output allows
“mixed mode” simulation

• together with myHDL it would be possible to simu-
late hardware and FPGA code together

4.3 The Pulse Source

Transient mode pulse source is realized by a Peace Wise
Linar Voltage Source (PWL). The voltage values for the
PWL are calculated by Python scripts.

We use two scripts:

• pulse_gen.py creates a rather simple model of
the real pulse using only a view samples for fast eval-
uation of the circuits.

• For the final simulation we use the script
scope2pwl.py . This script takes scope data
of the actual BPM signal to create the simulation
model.

4.4 Using Scope Data in Transient Simula-
tion

Figure 4.4 and?? show the output of a gnucap voltage
source simulation using scope data.

Figure 8: Simulated Output of Gnucap Voltage Source
created from Scope Data of Large Button BPM

Figure 9: Simulated Output of Gnucap Voltage Source
created from Scope Datai of PSI Resonant Stripline BPM

4.5 The Noise Source

Transient mode noise source is accomplished by a Piece
Wise Linear Voltage source (PWL). The voltage values
for the PWL are caluclated by a Python script.

Python has a modulerandom with a function
gauss which calculates the voltage steps of our PWL
source.

from python import gauss

for t in time :

v. append( gauss( DC-Value , RMS-Value ))

The script outputs a file noise.ckt containing a subcir-
cuit definition with the PWL code.

. subckt noise 1

vnoise 1 0 tran pwl

+0.000e+00 , 8.215e-01 ,

+5.000e-10 ,- 1.801e+00 ,

+1.000e-09 , 4.519e-01 ,

...
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(a) Time Domain

(b) Frequency Spectrum

Figure 10: Output Voltage of Noise Source

This subcircuit can be merged or included into the cir-
cuit simulation code and used in the following way.

. include noise . ckt

...

Xnoise 1 0 noise

The power slope towards higher frequencies is due to
the large timesteps of 0.5 ns here.7

7Internally gnucap might use smaller timesteps but the timesteps of
the output data were set to 0.5ns to reduce the data size.

Figure 11: Histogram of simulated Noise Voltage
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4.6 Gnucap Simulation of the AM/PM Prin-
ciple
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Figure 12: AM/PM Converter Circuit

The AM/PM-Converter is simulated as a circuit. The
phase detector and the low pass filter are currently simu-
lated in python using the results of the gnucap circit sim-
ulation of the AM/PM-Converter.

AM/PM DSP

S

R Q

Q 21

21

Edge Triggered 

Phase Detector

IntegratorGating

Figure 13: AM/PM Detector Schematic

The edge triggered RS flipflop with gated outputs per-
form better than other PD types.

4.7 Gnucap Simulation AM/PM Testcircuit

The beam position is sweept by running multiple simu-
lations with different pulse generator voltages. Currently
the voltages are calculated with the well known∆/Σ for-
mulae.

x =
ur − ul

ur + ul
(1)

The noise generators are two independant8 noise circuit
files which where generated by noisegen.py.

8 Using the same noise source for both inputs gives wrong results. In
reality these two sources are uncorrelated.

4.8 Simulated Position Sweep of AM/PM
BPM System

Figure 15: AM/PM converter Output at simulated Posi-
tion Sweep

The monitor voltages are calculated by the simplified
∆/Σ-Method. Therefore the indicated normalized posi-
tion is wrong for large offsets. Thus measurement results
can not be directly compared to this plot. To be able to
simulate the nonlinearities of the readout electronics and
get a good comparison to the reality the position sweep
generator must be updated to a more exact model.[2]

But for optimizing the circuit nonlinearities the via
∆/Σ calculated position sweep is sufficient.

According to Cocq [4] the output phase and therefore
also the output voltage should follow the following for-
mula:

ϕ = arctan
Va

Vb
(2)

As this is only the phase of one signal, but we are us-
ing phase difference between the two the formula for the
output phase is:

ϕ = arctan
Va

Vb
− arctan

Vb

Va
(3)

This gives a detector characteristic as shown in figure 16.
At large positon offsets the simulation and theory are

different. The reason for this is probably the following.
The theoretically formula is achieved by considering

one frequency and a phase shift of 90 degrees. But the
simulation as the real system uses a broadband signal.
The transmission line has no constant phase shift but a
constant time delay. So the phase shift increases with fre-
quency.

ϕ = arccos
ul − ur cos ωt√

u2
l + u2

r + 2ulur cos ωt

−arccos
ur − ul cos ωt√

u2
l + u2

r + 2ulur cos ωt
(4)
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Figure 16: Theoretical AM/PM Detector Characteristic

Figure 17 shows this graphically for transmission line
lengths of 0.5ns.

Figure 17: Theoretical Position Ouput of AM/PM Con-
verter at various frequncies

It depends on the phase detector characteristic and the
powerdensity vs. frequency how much influence this has
on the linearity of the position measurement.

4.9 Difficulties in the Simulation of the
AM/PM-BPM System

Due to the small time differences of the output pulse of
the AM/PM-Converter the simulation step size needs to
be quite small. This results in a large simulation time and
a lot of memory consumption.9

9The actual simulation time step size is controlled by Gnucap resp.
Spice.
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Figure 14: AM/PM Test Circuit

1157



4.10 Calculating the Signal to Noise Ratio
of the BPM

Band

pulse.ckt

Filter
Real Data
Pulse
Generator

50

50

fu BW,

Figure 18: Pulse Filtering
pulse.ckt is created using data acquired with a

20GSps Tektronix Scope from BPMs installed at FLASH.
The noise power is caluclated by

PN = kTfBW (5)

This is the worst case assuming matching between source
and load.

4.11 Large Button BPM

The BPM from which this signals are acquired is an exper-
imental BPM intended for installation in the cold section
of XFEL. It is currently installed at FLASH at 13ACC7.
The pipe diameter is 78 mm and the button diameter 8
mm.

Using the Neumann electronics described in section 5
a resolution of 20um was acchieved. Due to level mis-
match a 6 dB attenuator had to be used. With better level
matching (ajusted amplifier gain) a resolution of 10um is
to be expected. This means the SNR was around 66 dB.
According to figure 4.11 with an upper frequency limit of
300 MHz we should get 83 dB.

Several reasons account for this mismtach. First, the
SNR of the ADC board used, is limited. Also the band-
filter used in this simulation is a simple resonant circuit.
Thus the suppression of the high frequency components
is rather weak, so this components will still contribute to
the signal power. The electronics we used also has only a
simple resonant ciruit for filtering. But the active compo-
nents have their frequency limits also in the range of 300
to 600 MHz. Finally the SNR depends on the detector
circuit which is shown in section 5.4.

Figure 19: Large Button BPM Mechanical Drawing

Figure 20: Upper Frequency Sweep at Large Button BPM

Figure 21: Bandwidth Sweep at Large Button BPM

4.12 Small Button BPM

The signals of the following diagrams are taken from
BPM used at many places in FLASH. The data are taken
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from 21SEED. It has a pipe diameter of 9 mm and a button
diameter of 1.6 mm.

As we use here an ADC with only 8 bit our measure-
ment results are clearly limited by the ADC.

(a) Upper Frequency Sweep

(b) Bandwidth Sweep

Figure 22: Small Button BPM

4.13 Resonant Stripline BPM

The resonant stripline BPM is a new BPM design devel-
oped by PSI to be used at XFEL in the fast feedback sys-
tem. It consists of four resonant striplines with a length of
41.1mm. The beam pipe diameter is 34mm.

No electronics is installed at this BPM yet.

Figure 23: Resonant Stripline BPM Mechanical Drawing

Figure 24: Resonant Stripline BPM Bandwidth Sweep

At low frequencies the SNR increases with approx.
2dB/Octave. The decrease above 80MHz is due to the
bandlimiting of the stripline resonator.

Increasing bandwidth increases SNR.
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5 Delay Multiplex Single Path Tech-
nique

The Delay Multiplex Single Path Technique10 developed
by Rudolf Neumann is used at HERA quite a long time
without any troubles. First evaluations at FLASH with
only minor modifications of the electronics show very
good results - even on the small pulses there.

Further simulations concentrate on this technique.
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Figure 25: Delay Multiplex Single Path Technique

5.1 How the Delay Multiplex Single Path
Technique works

The Delay Multiplex Single Path Technique (Neumann
Prinzip) serializes two or more pickup buttons on one pro-
cessing channel. Thus channel parameters (attenuation,
frequency response, phase shift, . . . ) are the same for
all pulses and resulting in increased accuracy and reduced
drifts.

The serialization is done by a simple passive network
consisting of a delay line and a power combiner. One of
the pulses travels through the delayline before it is added
to the processing channel. There are no mechnical or elec-
trical switches required.

The serialization also gives good low frequency inter-
ference suppression because taking the difference of the
two pulses cancels out slowly variing interferences.

This article does not cover the simulation of the delay-
line properties, but concentrates on the second feature of
the Neumann Prinzip: the peak (hold) detector.

5.2 Peak (Hold) Detector

As the bunch length at FLASH and XFEL is much shorter
than the button diameter. The time distance between the
two edges of the pulse and therefore also the time dis-
tance between the two differentiated output pulses de-
pends mainly on the button dimensions and is therefore

10This technique was formerly called Time Multiplex BPM Tech-
nique. As the Bergoz System is sometimes also refered to as Time Mul-
tiplex Technique we changed the name to avoid ambiguities.

quite small. The spectral power maximum is thus located
in the microwave frequency range. There are several ways
to downconvert this signal to lower frequencies for further
processing. One can use a mixer (voltage multiplier) and
an local oscillator to move the high energy high frequency
range to DC or a intermediate frequencies. There are some
issues to take care of, e.g. phase stability compared to the
input signal.

The simplest way to downconvert the high frequency
signal is a diode detector. Clipping the negative pulse re-
sults in a DC offset which can be sampled - after low pass
filtering - by an ADC. The diode detector can be consid-
ered as a mixer, which uses its own input signal as LO (no
phase problems with the LO).

The diode detector can also be viewed as a self trig-
gered sample and hold circuit. The peakopensthe diode
channel ( i.e.connectingthe switch) and the hold capac-
itor is charged. When the pulse decays the diode channel
closes(the switchinterrupts) and the hold capacitor holds
the peak voltage for sampling with an ADC. There is no
jitter problem as at other sample and hold circuits.

5.3 A Short History of Delay Multiplex Sin-
gle Path Technique at DESY

For the realization of PETRA in 1978 the serial BPM sig-
nal processing was used for the first time. When HERA
was built around 1986 the ESPM-ADC was developed.
The four pickup signals of the BPM are serialized by a
four channel delay line system. The amplitudes of those
serialized signals are then captured by a fast peak detec-
tor circuit with self triggered reset. The output of this
peak detector is converted by a FLASH ADC. At HERA
there are about 300 BPM electronics of this type installed.
Around 1988 120 units of this system were installed at
PETRA and by and by a lot of other places on the DESY
site were equipped with this technique. Around 450 units
totally are running on the DESY site.

In 2002 six units of the Neumann electronic were in-
stalled at the A0 photoinjector at Fermilab [1].

At the start of operation of the TESLA Test Facility
TTF in 1997 the first working BPM system was the Neu-
mann electronics.

In the year 2006 experiments for increased resolution
of Neumann electronics at FLASH targeting XFEL were
started. The current results of this experiments are pretty
good and match simulations and theory mostly well.
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Figure 26: Neumann BPM at DESY

Figure 27: Neumann BPM Electronics
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5.4 Comparing variousIdealDetectors

To evaulate more or less real detector circuits or their sim-
ulations one needs to find out how much a real detector
degrades the noise performance of the system compared
to an ideal e.g. optimal BPM detector.

How does the optimal BPM detector looks like?11

The following pseudo-ideal detectors were compared:

Pulse Energie Detector Uout =
∫

u2
t dt

Absolute Voltage Integrator Uout =
∫
|ut|dt

Peak Voltage Detector Uout = ût

Double Peak Voltage DetectorUout = ût − ǔt

Pulse

Noise Band Isolation
Detector

Generator

noise.ckt

pulse.ckt

Generator Filter Amplifier

Figure 28: Noise Detector Test Circuit

5.5 Simulation Results

Detector Type Relative RMS Noise

Pulse Energie Detector 116 · 10−6

Absolute Voltage Integrator 67 · 10−6

Peak Voltage Detector 65 · 10−6

Double Peak Voltage Detector 49 · 10−6

The peak voltage detector and the double peak voltage
detector take the measurements at the point, where the
SNR is at its optimum. While the two integrators take
measurements also at the points of lower SNR.

5.6 Noise Performance of Real Detectors

A peak detector circuit and double peak detector circuit
with a HSMS 2850 diode are simulated in the same way
as the previous ideal detectors.

11The ideal detector is probably something like a matched filter using
every bit of the pulse but weighting it against the expected amplitude e.g.
SNR

5.6.1 Double Peak Detector

The peak detector as described in section 5.2 uses only
one peak of the input pulse. Figure 29 shows a double
peak detector which uses the positive and the negative
peak of the input pulse. As we are taking the difference
between the two peaks, i.e. measuring the peak-to-peak
voltage, low frequency interferences are canceled out12.
This cancellation not only works for artifical interferers
but also on thermal noise.

Figure 29: Double Peak Detector Schematic

Figure 30: Comparison of Detector Voltages

5.7 Simulation Description

The peak detector and the double peak detector are com-
pared by applying idealized pulse source. The subsequent
pulses represent the a sequence of output pulses of a but-
ton pickup excited by a zero offset beam. The output volt-
age of a noise source as described in section 4.5 is added
to the pulse voltage.

12The Neumann Prinzip already includes such an cancelling mecha-
nism by serializing the pulses on one line and caluclating difference over
sum. But the double peak detector shifts the range to higher frequencies.
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5.7.1 Simulation Results

Detector Type Relative RMS
Noise of sim-
ulated Circuit

Relative RMS
Noise of Ideal
Detector

Peak Voltage
Detector

94 · 10−6 65 · 10−6

Double Peak
Voltage
Detector

64 · 10−6 49 · 10−6

The ratio of the output noise of double peak detector
and peak detector is 1.47 which is nearby

√
2, which is

the theoretically expected improvement factor13. Thereal
detectors behave worse than theideal ideal detectors. Pos-
sible reasons are:

• Coupling of noise power across the diode capaci-
tance.

• Nonlinearity of the diode.

5.7.2 Comparing Diodes

The diode capacitance and resistances influence the de-
tector performance. Also thei(v) curve might have an
impact on the noise performance. This must be evaluated
by further simulations at beam positions other than zero.

Figure 31: Detector with Diode BAT 17

13Thanks to Hermann Schmickler for this hint at the workshop

Figure 32: Detector with Diode HSMS 2850

5.7.3 Diode Comparison Results

RMS Error of Normlized Position Reading

Detector - Diode BAT 17 HSMS 2850

Peak Detector 10.7 · 10−3 10.5 · 10−3

Double Peak Detector 8.11 · 10−3 7.97 · 10−3

• The double peak detector shows a better noise per-
formance.

• Diode influence must be further invesitgated.
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5.8 Charge and Position Sweep Simulations

These simulations are done with a pure voltage source.
Due to the nonlinearities14 of the detector diodes, the

position reading error increases with decreasing input
voltage i.e. beam charge.

Figure 33: Position Reading versus simulated Position
and Charge

5.9 Nonlinearities of Peak Detectors

The source impedance of the detector driver is a critcal de-
sign issue due to nonlinearities of the diodes. Amplitude
nonlinearity and possibly the sensitivity of the system de-
pend on it.

The intention of the BPM electronic is to measure the
voltage of the pickup pulse,U0 in figure 35. As we are
interested in the ratio of the two pickup voltages a constant
scaling factor does not concern us.

x =
6 Sur− 6 Sul

6 Sur+ 6 Sul
(6)

A subtraction of a constant voltage is more critical.

x =
(ur − ∆ur) − (ul − ∆ul)
(ur − ∆ur) + (ul − ∆ul)

(7)

If ∆ul = ∆ur = ∆u the equation reduces to

14Here the diode voltage itself

Figure 34: Position Reading Error versus Position and
Charge

x =
ur − ∆u − ul + ∆u

ur + ul − 2∆u
(8)

x =
ur − ul

ur + ul − 2∆u
(9)

The different denominator causes a different slope of
detector characteristic. Also the the slope is now charge
dependent.

This charge dependency caused by the voltage drop
across the diode can be seen around the center position
in figure 33.

At very large offsets in that figure the slope rapidly de-
creases, especially at low charges. This is caused by the
diode nonlinearity. The voltage drop across the diode de-
pends on the input signal strength. Due that fact the volt-
age drops accross the diodes are now different:∆ul 6=
∆ur.

To avoid the charge dependency one can simply add the
diode voltageuD to the read voltage, hereuC , like it is
done in the HERA BPM electronics. But due to the hard
requirements for XFEL care must be taken.

Obviously a centered beam is not affected by the diode
voltage drop at all. Due to the single path processing this
drop influences both pulses in the same way. Note that
figures 38 and 40 show no errors at zero offset beam posi-
tion.15

15With a two channel processing we might have different voltage
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The proposed cold BPM for XFEL (figure 4.11) has a
monitor constant of approx. K = 18 mm. A beam offset
of 6 mm produces a pickup voltage ratio of 2. Assuming
2.3V peak voltage of the larger pulse at the detector in-
put a change in temperature of only one degree causes a
diode voltage drift of 2.3K. This results in an readout er-
ror of 8um, which seems not to be acceptable for XFEL16.
Therefore the prototype electronic will have a second ther-
mally coupled diode driven by a DC current source where
the diode voltage will be measured to calculate a more ac-
curate position reading. Due to the dynamic properties of
the diode the actual voltage drop across the diode will dif-
fer from the reference diode. Further simulations should
show the difference between these two voltages and also
its dependency to temperature and input signal variations.

As shown above the voltage drop of the diode is not
only dependent on temperature but also on diode current.
As this current is dependent on the input voltage the posi-
tion readout error varies with beam charge and beam po-
sition offset. This nonlinearity can be compensated by
digital postdistortion of the pulse voltages.

The complete system will not have only the detector
diode as a nonlinear element. There are also various am-
plifiers (LNA, detector driver, buffer amplifier. . . ) which
distort the input pulses, i.e. the gain depends on the input
voltage and thus the input/ouput of the amplifier is non-
linear and the position reading varies with input voltage,
i.e beam charge and beam offset. These nonlinearities can
also be corrected by digital postdistortion of the read pulse
voltages.

Due to discharging of the hold capacitor by diode par-
allel resistance and buffer amplifier resistance resp. bias
current the roof of the detector output voltage is not flat
but drops down with time (figure?? and 5.7.2). When
more than one ADC samples are used to measure the
pulse voltage the postdistortion factor applied to the cur-
rent sample must not be calculated from this sample but
from the first sample of the recent pulse. Maybe it is pos-
sible to use the average voltage of all pulse samples to
calculate the correction factor. This correction factor must
then be applied to each individual sample of the pulse.

5.10 Source Impedance affects the Detector
Linearity

In order to reduce the influence of the diode voltage
drop the input source can be transformed up to higher
impedances. This increases the voltageUD in figure 35
therewith reducing the relative portion of the diode volt-
age drop.

In this simulations the generator voltage and resistance
are sweept providing a constant maximum output power.

drops on each channel.
16Approved specifications are not available yet

D

W

1 D i

D 9D =

Figure 35: Voltages at the Diode Detector

5.11 Diode Currents at different Source
Impedances

Driving the detector circuit with a current source instead
of a voltage source removes the diode voltage dependen-
cies described in section 5.9. Ifisrc is proportional to the
pickup signal the capacitor voltage ist the integral of this
input.

uC =
1
C

∫
isrc for isrc > 0 (10)

This detector then is very similar to the absolute voltage
detector simulated in section 5.4. In this case we are not
concerned by any nonlinear effects or voltage drops of the
diode.

The practical use of this current charge detector is lim-
ited by the stray capacitances of components and PCB.
Even when there is no pulse the current source would
charge the hold capacitor with noise and reflected pulses.
It is one of the advantages of the peak detector that re-
flected portions of the pulse, which are lower than the
original pulse do not charge the capacitor and therefore
do not interfere the position reading.

For this reasons the simulations where limited to source
impedances up to 500Ω.

The diode currents for different source impedances but
with constant input power are shown in figure 36. The
black triangle forming lines show the input voltage prior
to the transformer, i.e. the pickup voltage - idealized of
course to clearly show the effects. The simulation ob-
ject was a double peak detector. Both diode currents are
shown.

The bent peak of the diode current at low impedances
is not caused by diode nonlinearity but by the decreasing
voltage difference between source and capacitor. The ef-
fect of the voltage drop is visible at the beginning of the
first slope of i(D1). While the source voltage is low the
current does not follow that voltage directly. At that time
i(D2) is the reverse current of D2. It consists of a hunch
caused by the diode capacitance and flat shoulder caused
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by the diode resistance. Both effects increase with rising
impedance.
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5.12 Using Peak Detectors for Ringing
Pulses

Driving a peak detector with an high impedance source
changes the properties of a peak detector fromabsolute
to relative or local peak detector. As described in the
previous section the current source driven diode detector
also integrates the subsequent pulses to the hold capaci-
tor. This was considered bad for button type BPMs. In
case of ringing BPMs this is a wanted feature. Figure 41
shows the diode currents for a ringing input signal at dif-
ferent source impedances. The plot show that the sub-
sequent ringing pulses force additional charging currents.
Which increase the capacitor voltage, i.e. the output volt-
age shown in figure 42. Figure 43 shows the same curves
including the decay when the charge current falls below
the discharge current.

An increasing output voltage does not necessarily mean
an increasing SNR. As the level of the subsequent pulses
are lower, the SNR there is worse. There must exist a
certain integration time length for optimum SNR. Also the
reflections on the cables should be taken into account.
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6 Noise and Distortion Analysis of
Cascaded Systems

Cascadeis a command line tool to calculate the noise and
distortion perfomance of cascaded amplifiers. It works
similar to agilent appcad and easier to use than ADS bud-
get analyzer.

Gschemis the schematic entry of the GNU EDA Tools.
It comes with a symbol library to create block diagrams
for cascade. The schematic is then converted into the cas-
cade format bygnetlist.

For the tests in FLASH the gain of the HERA electron-
ics needed to be adapted.

MAR6

G=22
NF=3
IIP3=−6.5

SOURCE

C=−10
CN0=163

ATT

G=−8
NF=8

Figure 44: MAR6 Amplifier

Calculated Noise Figure = 11 dB
Substituting the MAR6 against MAR2 and reducing the

input attenuator due to the lower amplifier gain im proves
the noise figure by 7 db.

At the prototype we got a resolution improvement of
about the same value.

MAR2

G=12.5
NF=3.7
IIP3=−10

SOURCE

C=−10
CN0=163

ATT

G=−1
NF=1

Figure 45: MAR2 Amplifier

Calculated Noise Figure = 4 dB
This example of cascade use was quite trivial. Cascade

is capable of calculating noise and distortion performance

of larger systems and is therefore an interesting evaluation
tool for quick estimations of RF system performance.
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7 Conclusions

7.1 Circuit Design

• Increasing the upper frequency limit will increase
resolution.

• Changing from peak detector to double peak detector
will improve resolution.

• Using high impedance detector driver will decrease
nonlinearities and allows to take advantage of pulse
ringing.

• It is possible to use the Time Multiplex BPM Sys-
tem not only at button BPMs but also at resonant
striplines.17

• Todo: Temperature simulations.

• Is it possible/desirable to have an environment to
simulate the complete BPM electronics and test it
against the specifications?

7.2 Personal Opinions about Software Tools

• There is a large potential in Free Software Tools.

• One should do as much as possible withFree Soft-
ware. 18

• Concerning sophisticated features the free hardware
design tools are somewhat behind the comercial
products. Therefore at least one licence of ADS,
Genesys, SMASH(?) or a similar program should
be available.

• Due to high computing power consumption, espe-
cially in transient mode simulations, using a separate
machine is appropriate.

17Can the Delay Multiplex Single Path Technique be used at other
resonant BPMs, too?

18Buy better HW instead of expensive SW
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Circuit Simulation 
some humbling thoughts… 

Manfred Wendt 

Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.
1
 

Abstract. A short, very personal note on circuit simulation is presented. It does neither 

include theoretical background on circuit simulation, nor offers an overview of available 

software, but just gives some general remarks for a discussion on circuit simulator needs in 

context to the design and development of accelerator beam instrumentation circuits and 

systems. 

BEAM INSTRUMENTATION DEVELOPMENT: 

FOR WHAT DO WE NEED CIRCUIT SIMULATORS? 

 
FIGURE 1.  Schematic of a typical beam instrument, e.g. BPM, toroid, WCM, PMT, etc. 

 

Fig. 1 illustrates a typical beam instrument used in a particle accelerator, 

consisting out of a pickup detector (often part of the beam pipe vacuum system), an 

analog front-end (Analog Signal Processing), and several “digital” blocks 

including the analog-digital converter (ADC). Before spending lots of funds in 

money and time for purchasing and working with a sophisticated circuit & system 

analysis software product, it is worth to discuss how and for what circuits it may be 

applied in the development of a beam instrument. Some personal observations are: 

                                                 
1 This work was supported by Fermi National Accelerator Laboratory, operated by Universities Research Association Inc. 

under contract No. DE-AC02-76CH03000 with the United States Department of Energy 
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 As Fig. 1 indicates, the borderline between analog and digital domain in 

the signal processing chain is pushed further and further towards the 

detector, and this trend will remain. 

 “Classical” circuit simulation tools, e.g. SPICE and its variants (time 

domain), Touchstone and similar products (frequency domain) are 

focusing on the circuit level simulation, usually in the analog domain. 

 Model data is unavailable for many complex semiconductor 

components, e.g. ADCs, DACs, track&hold amplifiers, limiters, etc. 

 Digital signal simulation is mostly based on vendor supplied simulators, 

and very product specific, e.g. Quartex II for Altera FPGAs, etc. 

 Even today, there is no single simulation tool available to simulate a 

complete beam instrument, starting from the beam, through pickup, 

analog and digital signal processing, timing and triggering all the way up 

to the data management level at the LAN adapter. 

A conclusion of these observations should not be to exclude circuit simulation 

from the development of a beam instrument. Even though a complete front to end 

simulation is neither available nor desirable, critical parts or subsystem (particular 

analog sections operating at RF or microwave frequencies) of the beam instrument 

may deserve an in deep circuit simulation and analysis, e.g.: 

 Gain stages 

 Passive sections (filters, diplexers, hybrids, sections with distributed 

components, i.e. transmission-lines). 

 RF & microwave circuits 

 Layout effects, cross-talk, reflections and grounding 

 Noise and temperature analysis 

 Pickup detectors (button, stripline, cavity and other monitors) 

 High-speed digital I/O (CLK distribution, PECL & LVDL circuits, 

single-ended to differential transitions) 

CIRCUIT SIMULATION SOFTWARE 

We may categorize circuit simulation software as follows: 

 “Brainware”: Use pencil and paper and apply the Kirchhoff’s and 

Ohm’s laws for simple, often idealized sub-circuits. Big advantages are, 

in-deep understanding of the circuit and an analytical result. 

Unfortunately this method is limited to linear, sometimes oversimplified 

circuits. 

 Freeware: The best known time domain circuit simulator – SPICE – 

actually is a freeware product, developed at the University of California 

at Berkeley. The latest version (3f5), as well as many variants are free 

available to download (google “free spice simulator”). 

 $$$ware: Professional circuit simulator products are often based on the 

original Berkeley SPICE, but add some handy features like schematic 

entry, a very flexible output display, data management, etc. SPICE or 

equivalent time domain circuit simulators are often combined with, or 

added to layout systems. High-end “design suites” consists out of a set 

of different simulators (often called “solvers”), sometimes including 

electro-magnetic (EM) modeling.   
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Circuit simulators: 

 Fully analyze an electrical circuit based on implemented models for the 

circuit components. 

 Often have limited syntheses capabilities. 

 Usually solves the circuit topology by numerical approximation, thus 

no exact, analytical result is available. 

The models for the circuit elements, i.e. the mathematical definition along with 

the parameters, used for the numerical computation in the circuit simulator, are of 

crucial importance: 

 Lumped circuit elements are usually based on the ideal model 

formalism, e.g. capacitance, inductance, resistance. A real-world circuit 

component (capacitor, inductor, resistor) is more complex; typically 

has frequency, temperature, etc. dependent characteristics, “stray” 

elements and often non-linear effects. 

 Distributed circuit elements are modeled based on known analytical 

solutions or approximation of the EM problem, usually solved in the 

frequency domain. This implies a limited parameter range, and a 

Fourier transformation (inverse FFT) has to be applied to use the model 

in the time domain. 

 Nonlinear effects, temperature characteristics and noise behavior are 

available for some circuit models. 

 Some circuit simulators offer the implementation of user specified 

circuit models and/or stimulation sources. 

Circuit simulation software uses: 

 Linear solvers: DC, AC, S-parameter, etc. simulation in the frequency 

domain at steady state. 

 Nonlinear solvers (e.g. “harmonic balance”): Used for a small signal 

analysis around a specified DC working point. Offers spectral, 

distortion and other characterization of the system’s frequency 

harmonics. 

 Transient solvers (e.g. “SPICE”): Approximate solution of the circuit’s 

system of differential equations. This time domain approach includes all 

transient effects with given initial values. The method may be limited 

when computing models of highly resonant circuit elements (resonators 

with very high Q-values). 

 Special solvers: For arbitrary geometries of resonators, transmission-

line components, antennas, etc. EM solvers are available to approximate 

the geometry applying Maxwell’s equations. An S-parameter based 

solution is often available, thus the result can be used for further 

computations in a circuit simulator. Some analytical mathematical 

software products add circuit simulation routines as add-on to provide 

an analytical circuit simulation. Professional circuit simulation software 

usually includes statistical tools to optimize a set of circuit parameters 

to a given goal(s), which adds some limited circuit synthesis capability.   
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USING MATHCAD, MATLAB AND PSPICE 
FOR ELECTRONICS SIMULATIONS  

José Luis Gonzalez, CERN, Geneva, Switzerland.

Abstract 
During the conception and development phases of 

complex designs, electronics engineers usually need 
development tools that make the design faster and avoid 
breadboarding. Mathcad® and MATLAB® are among the 
most commonly used mathematical tools while PSpice® 
is certainly the most popular electronics simulator. This 
paper is not intended to be a tutorial; it only presents a 
few examples that illustrate how these programs have 
been used to ease designs. 

INTRODUCTION 
Constrained by increased project complexity and 

shorter design cycles, engineers rely ever more on 
analytical and simulation results before committing 
designs to hardware. A few examples will show the use of 
Mathcad® [1] and PSpice® [2] for electronics 
developments and MATLAB® [3] for beam data analysis. 

USING MATHCAD 
Mathcad lets engineers simultaneously design and 

document their projects, using a comprehensive set of 
mathematical functions. It is an efficient tool that 
integrates calculation results, graphs and text in a single 
worksheet, improving work verification and engineering 
collaboration. Mathcad is used in these examples to 
calculate the main parameters of some Beam Position 
Monitors (BPM) and plot their transfer functions. 

Button type BPM 
The button is an electrostatic monitor that uses the 

charge induced by the image current of a circulating 
beam. It generates a signal proportional to the beam 
intensity Ib and inversely proportional to the distance of 
the beam from the button. Its response can be evaluated 
using the “Spice” equivalent circuit of Fig. 1, where Z∞ is 
the coupling impedance, Ce is the electrode capacity and 
Rl is the load impedance. 

  
Figure 1: Simplified button equivalent circuit 
and actual view of the LHC button BPM. 

On Fig. 2, the main parameters of the button are 
calculated using Mathcad and the worksheet can be 
modified easily to fit the same kind of BPM with different 
dimensions. Depending on its size, the electrode capacity 

usually ranges from less than 1pF to a few pF and the 
corresponding low frequency cut-off extends from some 
hundreds of MHz to several GHz. 

 

 

 
Figure 2: Mathcad worksheet for the LHC button showing 
the main parameters and the frequency responses. 

The same approach can be applied to other button type 
electrodes, such as a High Frequency (HF) button where 
the electrode is simply the central conductor of a vacuum 
feedthrough. Its capacitance is about 0.6pF and the low 
frequency cut-off of this BPM is about 5GHz. Its transfer 
impedance is about 0.7Ω compared to the 1.4Ω obtained 
for the LHC button. 

The LHC coupler 
Couplers are devices that use the electromagnetic field of 
the beam to generate signals on strip-line structures. The 
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amplitude response, versus frequency, is periodic and it 
depends on the strip-line dimensions. The maximum is 
obtained for a frequency corresponding to f0 = c/4l and 
the minimum for fmin = c/2l, where l is the coupler length. 
Fig. 3 presents both the LHC coupler parameters and the 
frequency response. 
 

 
Figure 3: Mathcad worksheet showing the LHC 
coupler parameters and its frequency response. 

SIMULATION WITH PSPICE 
PSpice provides a complete simulation environment 

with schematic capture and plotting facilities. Analogue 
or digital models are available from many manufacturers. 
The “Optimizer” is an interesting feature that is presented 
here to improve the input matching of a filter. 

LHC Button model 

 
Figure 4: PSpice model of the LHC Button and 
beam definition using the current source settings. 

PSpice parametric analysis can be used to easily change 
the design characteristics and immediately simulate the 

effects. In the example of Fig. 4, the BPM parameter 
values Zinf and Cel are directly derived from the previous 
Mathcad calculations. To generate a Gaussian pulse that 
models the beam, a piecewise linear current source is 
associated to the definition file Gauss_q.pwl, then the 
parameters N, t and k allow for signal scaling. 

 

 
Figure 5: BPM and filter response to a Gaussian 
beam of 2.109, 2.1010 and 2.1011 charges. 

In order to accommodate pulse shape variations during 
signal processing, the front end electronics of the LHC 
button BPM use constant impedance Bessel low-pass 
filters that normalize the pulse duration for each pair of 
electrodes. The schematic diagram of a loaded electrode 
and the transient analysis are shown on Fig. 5 with the 
parameter N varying from 2.109 to 2.1011 charges per 
bunch. 

LHC Coupler model 
The PSpice model T2coupled, which defines two 

coupled transmission lines, is used in Fig. 6 to simulate 
the LHC coupler response to the same Gaussian beam as 
for the LHC button BPM. Since the coupler transmission 
line is short (len=12cm) and made of copper material, the 
resistive R value of the model can be neglected. The 
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coupling resistance Rcoupl and the parameters required to 
describe T2coupled, L (unit length inductance) and C 
(unit length capacitance), have already been calculated in 
the Mathcad worksheet of Fig. 3. 

 

  
Figure 6: PSpice simulation of the LHC Coupler 
using the transmission line model and the filter. 

Notice that the LHC coupler length is determined to get 
the same beam response as the LHC button BPM, which 
allows the use of the same processing electronics. 

LHC Bessel Filter Optimization 
As mentioned previously, the BPM signal must be low-

pass filtered and, in order to avoid reflections, the LHC 
BPM front-end electronics must present an adapted load 
to the monitor electrode. This is done using the adapter 
network shown in Fig. 7, where R1 and C1 are high-pass 
elements and Cr, Lr and Rr can be optimized in order to 
reduce the input reflection coefficient S11. 

 

 
Figure 7: PSpice schematics of the LHC Bessel 
filter with the input matching network. 

PSpice optimizer parameters are first filled with guess 
values and then the Optimizer helps finding the best 

component values that meet the performance goals and 
constraints that are defined in Fig. 8. 

 

 
Figure 8: The PSpice Optimizer allows 
constraints and goal functions to be specified. 

In this example, basic goals have been defined to meet 
a 50Ω input impedance and the constraint that S11 has to 
be less than -50dB. The response after using the optimizer 
results is shown in Fig. 9. 

 

 
Figure 9: LHC Bessel filter response using the 
Optimizer results (78.5nH, 21.55pF and 105.5Ω). 

However, to get these filters produced in large 
quantities, the specifications must be relaxed and a 
trimming capacitor can be used to fit the response within 
the specified limits of Fig. 10 (red curve). Notice that, in 
the high frequency range, the actual S11 measurement 
does not comply with the simulated results. This is due to 
the fact that, at these frequencies, the parasitic 
components of the inductors and capacitors cannot be 
neglected and then the models are not accurate enough. 

 

  
Figure 10: Parametric analysis using capacitor Cr 
and actual filter measurement. The red curve sets 
the upper limits of S11 during production. 
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DATA ANALYSIS USING MATLAB 
MATLAB is a high level language, which provides an 

interactive environment for numeric computations, 
algorithm development, data analysis and visualization. 
Several MATLAB toolboxes allow specialized uses in a 
wide range of applications, including signal and image 
processing, control design, communications... 

SPS Beam Data analysis 
MATLAB easily handles both vectors and matrices. 

Fig. 11 shows the data from an actual measurement of an 
SPS beam, which has been stored in vector format (called 
raw) in a text file (SPSdata.m) for subsequent processing. 

 

 
Figure 11: Actual SPS beam data acquisition.  

The MATLAB development environment integrates the 
program editor (Fig. 12) and plot windows (Fig. 13) that 
can be generated when running the program. 

 

 
Figure 12: MATLAB code for beam data analysis. 

When using the mathematical functions provided by the 
signal processing toolbox, it only takes a few lines of 
code to apply a standard window to the required beam 
data, calculate the corresponding FFT and display 
relevant results. Fig. 13 demonstrates the cleaning effect 
of windowing on the calculated spectrum for part of the 
data shown in Fig. 11. 

 

 
Figure 13: MATLAB display of the analyzed raw data 
or windowed data and the corresponding FFT results.  

The same processing can be repeated to different sets of 
data that can overlap (sliding FFT principle), giving the 
result plotted in Fig. 14. 

 

 
Figure 14: Continuous spectra of the SPS beam data. 

CONCLUSION 
Mathcad and MATLAB have proven to be efficient and 

powerful tools for the electronics engineer, both for data 
analysis and mathematical modeling. 

PSpice has been an essential tool for simulating 
electronics designs and make developments faster. 

REFERENCES 
[1] Mathsoft Engineering & Education, Inc. 

[2] Cadence PSpice. 

[3] The MathWorks. 
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2nd half day:   BPM technology  
– simulation of electronics, measurements 

Chair: H.Schmickler (CERN)  

 

Speaker/Institute; Title of talk 

 

1.) M. Wendt/FNAL  Development of a high resolution cavity BPM for the ILC cryostat 
2.) T.Traber/DESY Simulations of frontend-BPM-electronics at DESY 
3.) M.Wendt/FNAL Simulation of Frontend Analog-Electronics 
4.) J.Gonzalez/CERN Using MathCAD, Matlab and PSpice to simulate electronics parts 

 

In general: The main aim of the session was attained. The participants exchanged their 
point of view on particular features of the simulation tools and agreed on the level of 
detail one can get out of the model predictions. 

 

In detail: 

Add1) Very good agreement of design values compared to test measurements 

Add2) A large variety of options has been explored before the realization of the first 
prototype PCB 

Add4) Very comprehensive review of the functionality of modern tools. The talk has 
been suggested for a school/seminar with wider audience. 
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BPMS FOR THE XFEL CRYO MODULE 

D. Nölle, N. Baboi, K. Knaack, D. Lipka, N. Mildner, R. Neumann, M. Siemens, T. Traber, S. 
Vilcins , DESY, 22603 Hamburg, Germany

Abstract 
The European XFEL is based on superconducting accelerator technology developed in the context of the TESLA 
collaboration [1]. The accelerator itself consists of cryo modules equipped with 8 cavities, followed by a 
quadrupole/steerer package, a BPM and a HOM absorber. This contribution will present the layout of the BPM 
system for the cryo modules, describing the monitor itself, its integration into the cryo module. Additionally, the 
electronics concept will be discussed. Finally the results of beam measurements at FLASH using prototypes of the 
monitor and the electronics will be presented 

 

INTRODUCTION 
The accelerator complex of the European XFEL at DESY consist of a superconducting LINAC with a maximum 

energy of about 20 GeV. It is constructed out of 116 cryo-modules, with only a few warm sections intercepting the cold 
acceleration chain. The only monitor devices in the cold sections are BPMs, one per cryo module. They have to provide 
position and charge information along the LINAC.  

Two BPM types are currently under investigation, a re-entrant cavity BPM developed by CEA in collaboration with 
DESY [2], and a button type BPM. The latter will be the topic of this paper. 

 
Table 1: Requirements of the BPM 

Parameter Value 
charge 0.1 – 1 nC 

Bunch Spacing 200 ns (≥, arbitrary pattern) 
Position Resolution < 50 µm (Single Bunch) 
Charge Resolution 1 % 

#Datapoints 3250 within 650 µs @ 30 Hz 
Length 170 mm 

Beam Pipe 78 mm 
Operation Temp. 4 – 20 °K 

INTEGRATION INTO THE XFEL CRYO MODULE 
The XFEL cryo module houses 8 TESLA cavities followed by a superconducting magnet block, consisting of a 

superferric quadrupole and a set of steerers.  The BPM is connected to the vessel of the magnet. Components to follow 
are a gate valve and the HOM absorber. Fig. 1 shows the layout of the end of the cryo module in detail. 

 

 
Figure. 1: Layout of the back part of the XFEL Cryo module. 

 
In contrast to module BPMs at FLASH [3] (former TTF), the BPMs are flanged and not welded to the beam pipe. The 

BPM has a length of 170 mm, with two fixed, so called “cavity flanges” on both sides. The beam pipe diameter is 78 
mm, the inner beam pipe has to be copper plated. Since the BPM is connected to the liquid He vessel of the quadrupole, 
the BPM will be at a temperature close to the 4 k level. The vicinity of the superconducting cavities requires a particle 
free inner volume of the BPM (Cleanroom Class 100). The alignment to the magnetic axis and orientation of the quad 
has to be better than 300 µm (transverse) and 3 mrad (roll angle) The cables of the BPM have to be a compromise 
between low cryogenic losses and RF properties. 
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BPM MECHANICS 
Following the requirements on the mechanics inside the module a pickup monitor was designed. It is foreseen to mill 

the BPM out of a single piece, providing optimum tolerances and safety from the vacuum point of view. The alignment 
to the adjacent quadrupole will be based on field measurements of the quad and the use of dowel pins, included in the 
mechanical design of the BPM, in order to meet the tolerances mentioned before. 

 
Figure 2: 3D Model of the BPM prototype 

The design of a prototype is shown in Fig. 2.  In order to meet the requirements at the lower charge limit, a 
feedthrough design with a larger button size of 15 mm is currently under investigation. Therefore, there will be some 
changes concerning the flanges for the feedthroughs and the feethroughs themselves.  

 

ELECTRONICS CONCEPT 
As mentioned in Table 1, the bunch to bunch distance in XFEL is as long as 200 ns. Furthermore, the requirement is a 

single bunch, single pass resolution better than 50 µm. These requirements are close to the performance of the 
electronics type used for the DESY electron rings, typically operating with a bunch spacing of 96 ns [4]. Here the 
signals of the 4 buttons are added onto a single cable after running through delay lines of certain length. Thus the 
electronics gets a sequence of 4 pulses for processing. The influence of the delaylines is taken out by means of 
calibration. Due to the use of a single electronics channel, one gets good stability properties. XFEL will use a modified 
and updated version of this scheme. Due to the geometry of the XFEL BPMs it easy to separate the vertical and the 
horizontal plane and to process them by separate electronics. Thus there will be one electronic per plane. 

 

 
 

Figure 3: Block diagram of the BPM electronics for the pickup BPMs 

In order to deal with drifts of the delay line network a test and calibration facility will be included in each electronic. 
It will allow to send and analyse test pulsed before or after each RF pulse of the linac, for testing and online calibration. 

Since the will be various types of BPMs for XFEL this electronics has to be integrated into an overall framework of a 
BPM system. Currently this framework is under discussion with the colleges from PSI who plan to collaborate with 
XFEL on the warm BPM system. It is planned to integrate this electronics, including analog front end to ADC as a 
piggy pack board to be mounted on a common processing board. The cold BPM electronics would appear like an ADC 
unit to the processing board.  

Based on the test setups the layout of the PCB for a prototype series is under development, and protype boards will be 
available for testing in summer 07. Beam test at FLASH are scheduled for fall 07. 
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BEAM RESULTS AT FLASH 
A prototype of this XFEL BPM with adapted flange type (CF) and 8 mm buttons (as shown in Fig 2.) was installed in 

the FLASH LINAC.  Several studies have been performed with this monitor and different test setups for the electronics. 
The result of a measurement with this BPM and a first electronics prototype is shown below. 

 

 
Figure 4: BPM response vs. steerer current at FLASH 

The BPM was included in resolution measurements using correlation techniques [5]. For different charges in the 
range of 0.2 to 1 nC the resolution was measured to be better than 30 µm. Dynamic range of ±15 mm was also 
demonstrated, as well as a the required charge resolution of 1%. 

CONCLUSION 
In this paper the design and first measurements of a prototype for the BPMs in the XFEL cryo modules are presented. 

With the current design for a button type monitor and an electronics based on the scheme used at HERA, the 
requirements for XFEL can be met.  

REFERENCES 
[1] XFEL Technical Design Report, DESY 2006-97; XFEL.desy.de 
[2] C. Simon et al, this proceeding. 
[3] V. Ayvazyan, et al., “First operation of a Free-Electron Laser generating GW powerradiation at 32 nm wavelength”, 

Eur. Phys. J. D37 (2006) 297. 
[5] R. Neumann, private Communication 
[6] N. Baboi, “Resolution Studies a BPMs at the FLASH Facility at DESY”, Proc BIW 06, 227 
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chamber or flange and described chamber or flange and described chamber or flange and described chamber or flange and described magnetic and nmagnetic and nmagnetic and nmagnetic and non magneticon magneticon magneticon magnetic type type type type.   .   .   .       
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Page Page Page Page 10 Page and Page10 Page and Page10 Page and Page10 Page and Page    11 11 11 11         
    
Example of BPM Example of BPM Example of BPM Example of BPM     
 
Page 12  Page 12  Page 12  Page 12      
    
Prototype BPM Prototype BPM Prototype BPM Prototype BPM     
This is prototype BPMThis is prototype BPMThis is prototype BPMThis is prototype BPM for J for J for J for J----Park.  Cylindrical component Park.  Cylindrical component Park.  Cylindrical component Park.  Cylindrical component are out ofare out ofare out ofare out of Alumina  Alumina  Alumina  Alumina 
ceramic. Metallizationceramic. Metallizationceramic. Metallizationceramic. Metallization was fabricated inside and outside of  was fabricated inside and outside of  was fabricated inside and outside of  was fabricated inside and outside of the cthe cthe cthe ceramic tube.eramic tube.eramic tube.eramic tube.    
Each pattern Each pattern Each pattern Each pattern  metallization is connected to  metallization is connected to  metallization is connected to  metallization is connected to the the the the center conductor of SMA center conductor of SMA center conductor of SMA center conductor of SMA 
FeedFeedFeedFeed----through which was brazed outside of ceramic.through which was brazed outside of ceramic.through which was brazed outside of ceramic.through which was brazed outside of ceramic.    
                    
Page 13   Page 13   Page 13   Page 13       
    
MicroMicroMicroMicro----strip line BPMstrip line BPMstrip line BPMstrip line BPM    
This product is used for the Synchrotron This product is used for the Synchrotron This product is used for the Synchrotron This product is used for the Synchrotron Radiation Radiation Radiation Radiation Monitor. Monitor. Monitor. Monitor.     
    
    
Page 14 Page 14 Page 14 Page 14     
    
The pulse length of Synchrotron Radiation is minimum 2 nsec at Spring The pulse length of Synchrotron Radiation is minimum 2 nsec at Spring The pulse length of Synchrotron Radiation is minimum 2 nsec at Spring The pulse length of Synchrotron Radiation is minimum 2 nsec at Spring ----8.8.8.8.    
Purpose of this product is SR Purpose of this product is SR Purpose of this product is SR Purpose of this product is SR positioning,positioning,positioning,positioning, Pulse strength and Timing mon Pulse strength and Timing mon Pulse strength and Timing mon Pulse strength and Timing monitor for itor for itor for itor for 
trigger.trigger.trigger.trigger.    
 

Page 15Page 15Page 15Page 15    
    
TTTThis his his his conventional W blade conventional W blade conventional W blade conventional W blade detector was not designed for high frequency signal.detector was not designed for high frequency signal.detector was not designed for high frequency signal.detector was not designed for high frequency signal.    
Half Half Half Half –––– width of o width of o width of o width of out put signalut put signalut put signalut put signal is 2 nsec.   is 2 nsec.   is 2 nsec.   is 2 nsec.      
    
Thus,Thus,Thus,Thus, 2 nsec pulse length signal can not be separated.    2 nsec pulse length signal can not be separated.    2 nsec pulse length signal can not be separated.    2 nsec pulse length signal can not be separated.       
 
Page 16Page 16Page 16Page 16    
    
WWWWe considered high frequency design e considered high frequency design e considered high frequency design e considered high frequency design from Synchrotron Radfrom Synchrotron Radfrom Synchrotron Radfrom Synchrotron Radiiiiation ation ation ation detecting area.detecting area.detecting area.detecting area.    
AlN AlN AlN AlN cccceramic substrate was brazed on slant surfaceeramic substrate was brazed on slant surfaceeramic substrate was brazed on slant surfaceeramic substrate was brazed on slant surface of CuW of CuW of CuW of CuW....    O.F.H.C made micro O.F.H.C made micro O.F.H.C made micro O.F.H.C made micro 
strip line was brazed at SR detecting area.strip line was brazed at SR detecting area.strip line was brazed at SR detecting area.strip line was brazed at SR detecting area.    MicroMicroMicroMicro----strip line is matched 50 ohm strip line is matched 50 ohm strip line is matched 50 ohm strip line is matched 50 ohm 
impedanceimpedanceimpedanceimpedance to optimize  to optimize  to optimize  to optimize ceramic thickness and O.F.H.C line ceramic thickness and O.F.H.C line ceramic thickness and O.F.H.C line ceramic thickness and O.F.H.C line width.  width.  width.  width.      
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Page 17Page 17Page 17Page 17    
    
Gray color component is AlN ceramic. And Gray color component is AlN ceramic. And Gray color component is AlN ceramic. And Gray color component is AlN ceramic. And slant shape metal slant shape metal slant shape metal slant shape metal is CuW.is CuW.is CuW.is CuW.    This This This This 
detector was welded on Vacuum chamber at Synchrotron Radiation line in Spring detector was welded on Vacuum chamber at Synchrotron Radiation line in Spring detector was welded on Vacuum chamber at Synchrotron Radiation line in Spring detector was welded on Vacuum chamber at Synchrotron Radiation line in Spring 
8.8.8.8.    2 nsec pulse signal was separated clearly using this developed detector.2 nsec pulse signal was separated clearly using this developed detector.2 nsec pulse signal was separated clearly using this developed detector.2 nsec pulse signal was separated clearly using this developed detector. 
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Abstract 
The presentation provided by Meggitt Safety Systems Inc. (MSSI) was aimed at providing the overall information about 
the company and to highlight MSSI’s approach in designing and manufacturing the BPM and Feed-through for high 
energy physics communities worldwide. The goal was to inform the users about MSSI engineering and manufacturing 
capabilities in supplying hermetic BPM, feed-through and cable assemblies. It was of great value to interact directly with 
users and suppliers during the conference and be able to obtain the market needs and areas in need of improvement. 
MSSI has a long history of over 50 years manufacturing SiO2 insulated cable assemblies and hermetic connectors used 
by aerospace, nuclear and instrumentation market. The presentation also provided MSSI engineering and manufacturing 
capabilities and demonstrated BPM modeling using CST and HFSS. Although MSSI is capable of producing hermetic 
BPM and feed-through using ceramic to metal brazing, however, it was determined that the glass to metal sealing 
provides a more reliable seal and better electrical performance.  
 

 
Outline 

• Meggitt PLC organizational Chart 
• Quality Management 
• MSSI Business nature 
• Cable product Line history 
• Cable construction 
• SiO2 Cable types 
• Advantages of SiO2 cable 
• Qualified SiO2 cables for Nuclear application 
• Cable/Connector, BPM, engineering Capabilities 
• Process Capabilities 
• BPM modeling using CST and HFSS 

 
 
Meggitt PLC organizational chart 
The intent of presenting Meggitt PLC organizational chart was to demonstrate the market Meggitt serves and to provide 
additional information about the corporate products offered in case there would be an interest. The chart also showed 
the various locations in the areas worldwide that Meggitt is operating in.  
  
Quality Management 
MSSI operates within the guide lines of highly recognized quality systems such as ISO 9001 and NRC, which are the 
industry’s standards and used worldwide. All products manufactured at MSSI go through vigorous inspections and all 
applicable requirements prior to shipment to the customer. 
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MSSI business nature 
MSSI, based in Simi Valley, California, designs and manufactures various products such as silicon dioxide cable 
assemblies, BPM, feed-through, fire and smoke detectors and actuators. 
MSSI’s key markets are located in USA, Europe, Asia and North and South Africa. The market segments being served 
by MSSI and its products are High Energy Physics, Petrochemical, Aerospace, Nuclear, and Defense. 
    
Cable product line history 
The basic cable product, which was the SiO2 mineral insulated cable assembly with hermetic connectors, was 
developed back in 1946 to fulfill the industry’s need for high performance/high temperature cabling. The product line was 
later acquired by Whittaker Corporation in 1979. Because of the nature of the SiO2 insulated cables and its 
characteristics and ability to withstand very high radiation exposure without any degradation, the cable was introduced to 
Nuclear market in 1980. 
 
The cable product line remained a separate entity within Whittaker Corporation as Electronic Resources until its merger 
with a sister division Safety Systems Inc. in 1997.  Whittaker Corporation was acquired by Meggitt PLC in 1999 and to 
date remains as MSSI. 
 
Throughout all the name changes and acquisitions, the cable product line maintained most of the original staff and 
operators involved with the product. MSSI cable and connector products have been successfully used on various 
platforms since its inception and have proven to provide high reliability. MSSI always strives to improve the performance 
and reliability of its products and accommodate the industry’s needs. 
      
Cable construction 
MSSI has been manufacturing stainless steel, all-welded hermetic cables with non-organic materials for applications in 
extreme environments for more than 40 years.  MSSI has designed, developed and delivered radiation and temperature 
resistive Silicon Dioxide (SiO2) insulated cable assemblies to the Military and Avionics Industry since 1960. The basic 
cable and connector technology is applied to a myriad of configurations in critical high temperature and vibration 
applications on various platforms.  MSSI products are found wherever reliable performance in harsh environments is 
required.  

The core technology in the MSSI cables is the use of silicon dioxide (SiO2) as the dielectric insulator, resulting in 
extraordinary stability of the electrical and mechanical properties of this material under severe environmental extremes. 
The SiO2 is extruded over the conductors, e.g., copper; or other alloys depending on the specific application.  The 
extrusion process provides the design flexibility that facilitates the manufacture of an almost unlimited array of conductor 
configurations and sizes.  The resulting extrusion is then loaded into a stainless steel (or other metal alloy) tube, and 
drawn down to size. In the final configuration, the SiO2 maintains conductor position in the tube relative to the other 
conductors and the outer sheath maintaining precise spacing for stable electrical performance.   The unique spherical 
shape of the SiO2 particle holds the conductor spacing through cable bending operations, usually encountered during 
routine installation operations, hence electrical performance is not compromised in any way.   

This characteristic permits forming and routing at installation with a very tight bend radius nominally three times the cable 
diameter without causing any damage to the cable. MSSI cable assemblies continue to operate in temperatures above 
2000oF.  

SiO2 Cable types 
MSSI offers a wide variety of cable/connector types with different material and construction to suit required applications. 
The configurations offered are coaxial, triaxial, shielded coaxial and twisted pair and multi-conductors. 
All SiO2 cables are supplied with hermetic connectors, which are 100% helium leak tested. 
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The SiO2 cables offered by MSSI are used on a variety of applications in extreme environments and temperatures. 
Some of the most common applications are cryogenic, electrical power, RF/Microwave, control and instrumentation. 
 

 
 
The type K thermocouple SiO2 cables are also available for application requiring such a device. 
 
Advantages of SiO2 cable 
The SiO2 cable is more superior than any other mineral insulated cable when it comes to performance and reliability. 
Some of the advantages are its amazing electrical performance stability at extreme temperature and pressure. Sio2 
cables offer at least two decades better insulation resistance value at high temperature than any other mineral insulated 
cables. 
  
Qualified SiO2 cables for Nuclear application 
The SiO2 cable assemblies are widely used in nuclear power plants because of its resistance to high radiation dosage 
exposure in access of 100 Mega Rad. Different cable configurations utilizing various metals are used in different 
locations of nuclear power plants. The life expectancy of the SiO2 cables for nuclear application is 40 years.  
  
Cable/Connector, BPM, engineering Capabilities 
MSSI engineering department is staffed with wide range of disciplines such as electrical and electronic, mechanical, 
material, chemical, optical and software engineering group to provide solutions to customer needs. 
MSSI engineering uses a number of state of the art software that is available to simulate and analyze the design. The 
software used are HFSS, FE structural, SFD, solid works, AutoCAD and various others. 
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Process capabilities 
MSSI possesses a range of manufacturing capacities in the areas of brazing, welding, glass to metal sealing, extrusion, 
heat treatment, metal forming and soldering. The brazing consists of different types; induction, filament, torch, and 
furnace. MSSI is equipped to use a GTAW, Laser, and resistance welding, as required and depending on application. 
For most applications the GTA or laser welding is used. The glass to metal sealing technique used by MSSI are either 
compression or matched/expansion. Heat treatments at MSSI are either vacuum, or annealing at H2 atmosphere. 
    
BPM modeling using CST and HFSS 
In order to demonstrate the engineering capabilities at MSSI and their utilization of available tools such as state of the art 
HFSS software a modeling of a known BPM and a new design BPM was presented. The modeling was conducted using 
the HFSS and CST to check the accuracy of the two systems. The first modeling was conducted on a known BPM with 
available actual capacitance test result. The modeling resulted in an acceptable capacitance value between the 
simulation and actual test result and proved a good correlation between the CST and HFSS.  
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Experience with cold feedthroughs at 
DESY and short forecast of new cold 

feedthroughs at DESY 
By Silke Vilcins, MDI, DESY 

Introduction 
This CARE workshop was dedicated to “Simulation of BPM Front-End Electronics and Special 
Mechanical Designs”. The third day of this workshop was specialized to cold BPM technologies.  

This talk is given an express using feedthrough for beam position monitors in cold areas with the 
experiences of sixteen years lifetime in the HERA Proton accelerator. Further is in this presentation 
showing the cryogen test procedure of variety of feedthrough which are implemented in several beam 
position monitors at DESY. The goal for the future is to design a feedthrough, target-orienting to the 
application of the XFEL cold beam position monitor.  To make a design concept, close to the technical 
design report, with all the mechanical and electricity specs to minimize all critical defects.  
 

Contents 
1 Past: Experience of cold feedthroughs in the storage ring HERA 
2 Now: Diploma work of  two students at DESY, group MDI “Ultrahochvakuum RF 

Durchführungen auf Tieftemperatureignungen testen, protokollieren und optimieren “ 
3 Earliest Future to now: Design of a cryogenic feedthrough for XFEL   
4 Summary. 

Past: Experience of cold feedthroughs in the storage ring HERA 

A. Technical summary of the HERA proton BPM feedthrough 
More than sixteen years, the in the TDR of HERA is showing a proton monitor which is 
installed in a cold module of HERA. At this time the experiences in cold tested feedthrough 
wasn’t presented. The experts in the diagnostic group of DESY decided for the Japanese 
company Kyocera for the cold feedthroughs. I don’t know the basic principles of this decision. 
DESY installed 220 proton monitors with four feedthroughs each (880 feedthroughs). The 
working temperature is 4K. The warm up (4 K to 330K) and the cool down (330 K to 4 K) 
processes need about ten days. The type of the feedthrough is a Kyocera type N. The body 
and the conductor material is Kovar, a Fe-Ni-Co alloy, with a CTE 5,0 * 10 -6 K -1 20°C (CTE 
Coefficient of thermal expansion) The insulation material is Al2O3, exact A473, a material 
composition of Kyocera themselves. The CTE is 8,5 – 9,0, the exactly material composition 
can not be find out, because this is a topic of the manufacturing  process of feedthrough  
companies. Kovar and Alumnia formed a good material combination for higher temperature 
applications.  

B. Drawing and photos of this BPM and feedthrough 

On this page a few drawings and photos will present the Kyocera feedthrough and the proton 
monitor of HERA. 
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 Fig. 1: Cross cut of the technical manufacturing drawing in a complete monitor with the 
antenna 

 

 
Fig. 2: The proton BPM (stripline) as a 3D view, courtesy to H.P. Gausepohl, DESY 

 
Fig. 3: Photo of a cold HERA proton BPM and its manufacturing drawing  
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Fig. 4: Photo of an N type feedthrough, company Kyocera, and it technical drawing. 

 

 
Fig. 5: The Kyocera feedthrough, technical drawing 

 
 Fig. 6: A picture of an old longitudinal cut drawing showing connection point feedthrough to 
antenna 
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 Fig. 7: Drawing of the cross section feedthrough - antenna 
 

C. Lifetime results and conclusion  

The experiences gained during these more than sixteen years of design, fabrication, testing, 
installations and operation with these feedthroughs are discussed in the following:  

• Alumina and Kovar formed a good material combination respected to CTE. 

• During the lifetime of HERA 10% of the feedthrough were broken. The leakages weren’t 
exact detected, because it was very difficult to find the very tiny cracks. We did not invest 
any effort to analyse the problem. In case of a broken ceramic, we removed this antenna 
with two feedthroughs and replaced this antenna with two new feedthroughs. The 
feedthroughs were checked in advance only once of there high vacuum capability, but 
they were not tested by cold running cycles.   

• The HERA experience shows that 10 % broken feedthroughs are too much for a design 
of a cold XFEL BPM feedthrough. And we learned it’s very important to design a 
feedthrough matched to the application! 

Now: Diploma work of two students at DESY, MDI  entitled: 
“Ultrahochvakuum RF Durchführungen auf 
Tieftemperatureignungen testen, protokollieren und optimieren “ 

A.  Short Technical summery of the test procedure  

The European XFEL is designed on superconducting accelerator technology. The 
cryogenic accelerator modules consist of modules equipped with 8 cavities, followed by a 
quadrupole, a BPM and a Higher Order Mode coupler. 
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  Figure 8 : Cross cut of a XFEL cryo module 

The diploma work “Ultrahochvakuum RF Durchführungen auf Tieftemperatureignungen 
testen, protokollieren und optimieren “ was the first time at DESY, that a test procedure for 
feedthroughs under cryogenic atmosphere for more than a few feedthroughs was used. 

Reasons for that procedure were to get more experience about design, manufacturing 
process and cryogenic test procedures of feedthroughs and to get a better understanding for 
the development of a new feedthrough for the cold button BPM of XFEL.  

Feedthroughs from two different companies, four different types, were tested. Two flange 
versions and two feedthroughs especially design for welding directly into the BPM bodies 
were available and tested. We used want we had at this time in our group to gain the 
experience. On the base of that we might test other feedthroughs later. The boundary 
conditions of the test procedure were taken out of the XFEL Technical Design Report.  
Following points have to be attended: 

• working temperatures of the feedthrough in the area of the cryo-modules is 4 K liquid 
helium  

• the feedthrough has to be tested of ultra high vacuum suitability before going into the 
cold test cycles 

• the feedthrough has to be mounted to the BPM body with a maximum reliability  

• cool down to 4.5 K and warm up to 330 K as to cycle 10 times for each probe (using a 
test adapter with four feedthroughs)  

• the leakage rate has to be checked after each cycle, (duration time was about 2 min.) 

For applications in XFEL, the feedthrough has to be designed for its installation in particles 
free atmosphere, rinsing class 10 (this point wasn’t integrated in the cold test procedure).  

B. Drawing and photos of the relevant testing feedthrough 

A few picture of same mechanical parts for the testing procedure with mounted feedthroughs 
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Fig. 9: Meggitt flange feedthrough mounted to the test adapter flange  

 
Fig. 10: Left side: Copper - silver plated flat gasket from VAT 

    
Fig. 11: PMB feedthrough, for welding construction, also welded to the test adapter 
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Fig. 12: The Meggitt feedthrough, for welding construction, welded to a test adapter, knob 
diameter 15 mm. 

    
Fig. 13: The flange version from PMB, France is shown.  

 

      
Fig. 14: These two pictures show different tested feedthrough from PMB, France. The left 
shows a gold plated stainless steel button with molybdenum conductor brazed to AL2O3 
ceramic insulator. Usable directly mounting with the BPM body. The design is based on a 
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DESY idea.The right picture presented a direct welding feedthrough, 11 mm stainless steel 
button, molybdenum conductor, brazed to Al2O3 ceramic insulator. (PMB standard design) 
Both feedthroughs are designed for an impedance of 50 ohms. And used under normal 
temperatures. 

 
 

      
Fig. 15: These pictures show the two different tested feedthrough from Meggitt, USA.  
The left picture presented a direct welding feedthrough with a 15 mm stainless steel button, 
molybdenum conductor, fired to Al2O3 glass ceramic insulator. The right shows a gold plated 
CuBe pin with a metric thread ended to a molybdenum pin. The lead pin is fired to glass 
ceramic insulator. Usable directly to a flange, mounting with VAT flat seal to the BPM body. (A 
DESY designed feedthrough). Both feedthroughs are designed for an impedance of 50 ohms. 
Used under normal temperature and used under particle free atmosphere. 

Pictures from BPM’s with the tested feedthroughs in their accelerator.  
 

 
 
Figure 16: FLASH, first testing button BPM for a cold XFEL BPM (PMB feedthrough flange 
version with 8 mm gold plated knobs. 
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Figure 17: A flange version feedthrough from Meggitt, with a 1,6 mm diameter pin, installed in 
2006 for testing BPM electronics at  PITZ. 

  
Fig. 18: Left: FLASH, the first PSI resonant Stripline with flanged feedthrough from Meggitt 
with a M 1,6 mm gold plated tread-end. Right: FLASH, Stripline BPM with flanged 
feedthrough from Meggitt, same feedthrough version is shown above.  

C. Results of the cold test procedure 
… NOT one of this feedthrough is broken…. 
This was an amazing conclusion for me. The testing procedure was very close to the real 
working environments. But this test was the first steps to get a better understanding of the 
interaction between every item of feedthroughs. 
 
I mean exactly all of the elements that should be considered in a design of a cold feedthrough. 
To achieve the best results of the lowest failure rates we have to take care of the electric, RF 
and mechanical parameters and spec.  
 
Goal is to design a cold feedthrough, with a minimum failing rate, nearly particular 
free and a suitable RF design for XFEL… 
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Earliest Future to Now: Design of a cryogenic feedthrough for 
XFEL   

A. First design of a cold prototype BPM housing 

The first design is made in the DESY group MVP, courtesy by Nils Mildner. 

 

 
Fig. 21: Cross cut through the first prototype BPM housing. One of these prototypes is 
installing in FLASH, one is now mounted to a cryogenic module at FERMILAB and the last of 
this first prototype housing will be installed in a new module in Flash in spring 2008.  

B. Design specs of a cold prototype feedthrough 

Now I will give a short review of the components “Cold button BPM for XFEL” and give a 
forecast to the next steps, design aspects, technological issues and open points. Most 
issues have to be carefully viewed during the design phase and prototyping test phase to 
optimize the fabrication process to become a safe and efficient series product.   

General 

The electric requirements are designed for lower beam charge limit of 0.1 nC/bunch, a 
feedthrough design with a larger button size of 20 mm is currently under investigation.  
The feedthrough will be optimized for RF properties up to about 2 GHz. Currently the 
design of a feedthrough is under investigation, starting from the first version. 

BPM housing 

The housing material has to be stainless steel AISI 316LN or 316L with a maximum 
magnetic permeability from 1,01 to 1,05 after all manufacturing process. The inner surface 
has to be copper plated. The flange design has to be compatible to the neighbour 
components in the XFEL modules. The alignment BPM to the quadrupole has to be 
specified to have an alignment item, guaranty the debit line between the quadrupole and 
the BPM after mounting in the cleaning room. The design has to integrate all requirements 
of particle free cleaning, mounting and operating.  

The mechanical tolerances have to be relaxed as much as possible but the functionality of 
the BPM and the RF design parameters have still to be matched. Tight tolerances all along 
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the production chain let the cost grow up. A good design - does not over-specify the 
tolerances, - take care about mechanical deformations and - take a view on the quality 
check process. Tolerances should be designed as close as possible to your final product 
and to the required quality standards.   

Feedthrough 

The mechanical tolerances have to be as tight as necessary to guaranty the BPM 
resolution. A goal of the feedtrough design is to obtain the highest output voltage level as 
possible. Boundaries are the mechanical dimensions of the beam pipe.  

The materials of the feedthrough are now for the prototype series: 

a. Body and knob 316 LN, 316 L or 304 L stainless steel or titanium 

b. lead conductor molybdenum per ASTM B365, copper beryllium or stainless steel 
(same as body material)  

For using 316 L or 304 L the maximum value of magnetic permeability has to be between 
1,01 to 1,05 after all manufacturing processes.  

The actual design is a flange version, to minimize the failure rate during cleaning and 
mounting.  Flanges versions are a little bit more expensive to welded versions, but for 
handling and mounting it reduces the process time. The flange versions are better for 
cleaning. The gap between knob and housing are optimized for rinsing processes. The 
vacuum seal between feedthrough and BPM housing is a normal Conflat copper gasket.  

Another requirement is a reliable operation in the cryogenic environment of 4K. Therefore, 
extensive tests are foreseen. All feedthroughs of the series production will have to pass a 
cryogenic test. The test procedure is under investigation. 

Also different assembly techniques like soldering or force fitting are evaluated. The diploma 
work has shown that the different tested feedthrough types, (soldered or force fitted 
designs) can be used at low temperature. 

The feedthroughs have to be check of there hermetic leak tightness to 1*10–10 (mbar*l/s) 
before and after the cryogenic tests.  

The last parameter is the heating resistance up to 150 °C for 4 hours.   

Simulation 

One of the simulations was to optimize the knob diameter to get a highest output voltage 
and find a good compromise to particular cleaning process. (Gap between knob and 
housing!) 
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Fig. 22: The level of signal, as a function of frequency at feedthrough connection. 
Simulation done with 1 nC beam, 2 mm sigma length and 15 mm offset. The highest level 
provides the button with 20 mm diameter. All the simulation done by Dirk Lipka and 
Thomas Traber DESY 

Drawings of the new prototype design… 

 

Figure 23:  Cross section of the new design of the prototype, designed by Maike Siemens, 
DESY on 3D Cad System IDEAS. 
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Figure 24: Isometric view of the new design of the prototype, designed by Maike Siemens, 
DESY on 3D Cad System IDEAS. 

 

Summary 
Schedule: 
• Start design of the prototype feedthrough with FEM optimizing and RF calculations (Jan.07 – 

Feb.07) –in time- 
• Redesign of feedthrough and fixing the BPM body design (Mar.07 – Jun.07) –in time- 
• Fixing the specifications for the offer (Mar.07 – Jun.07) - delayed- 
• Start writing the cold testing procedures (Mar.07 – Jun.07) –delayed- 
• Start ordering prototyping series (Jul.07 – Dec. 07) 
• Start of the series production (…Jun. 08) 

Open points of mechanical design: 
• Fixing the tolerances of feedthrough and BPM housing 
• Alignment to the quadrupoles 
• Vibrations uncritical for BPM resolution? 
• MTBF for XFEL vacuum components has to be calculated and defined. 
• Lifetime of the XFEL components. 
• Writing of the cold test procedure 
• Writing of ordering specifications for prototypes 
• Design of the particle free mounting frames 
• FEM simulation of the complete BPM, including all system components  

Open points of electrical design: 
• Fixing a few parameter, voltage, impedance, reflection..  
• Radiation resistance  

Open points of simulation: 
• Simulation of the tolerances between feedthrough and housing 
• Simulation the feedthrough position to axis 
• Feedthrough position into housing 
• Simulation the angle feedthrough to feedthrough   
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Novel Methods for 

Accelerator  
Beam  

Instrumentation 
4th workshop 

Simulation of BPM front-end electronics an
Special Mechanical Designs 

30th of November and 1st of  December 2006 
Lueneburg, Germany 

 

Design Choices for the cold LHC- BPMs 
Christian Boccard, CERN AB/BI 

 

Abstract 
The 3rd half day of the CARE workshop was dedicated to special mechanical design and 
cold technology. 
This presentation is not a complete and global review on the LHC BPMs design and 
fabrication. The goal is more to pinpoint particular aspects or technological issues to be 
carefully taken in account during each step of the design and fabrication process. It is also 
a chance to give other experts feedback on the experience gained during these years of 
development, design, fabrication, testing and final installation. 
 

Outline 
• Design parameters and choice 
• BPM types in the LHC 
• BPM Integration 
• Components 
• Bodies 
• Buttons 
• Striplines 
• Cold Cables 
• Cryostat feedthroughs 
• BPM installation and Tests 

Design parameters and choice 
A lot of parameters have to be taken in account during the design phase leading to 
technology and material choices. Here are some examples: 
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• COST 
• MEASUREMENT REQUIREMENTS 
• BEAM STRUCTURE AND INTENSITY 
• OPERATIONAL SCENARIOS  
• ELECTRICAL CHARACTERISTICS 
• FORESEEN LIFETIME OF THE ACCELERATOR 
•  INSTALLATION SCHEDULE 
• ACCESS TO EQUIPMENT  
• INTERVENTION WORK 
• COOLDOWN TIME 
• NUMBER OF THERMAL CYCLES 
• NUMBER OF QUENCHES 
• INTERFACE AND ENVIRONMENTAL CONDITIONS 
• VACUUM  
• PRESSURE 
• RADIATION DOSE  
• ACTIVATION  

 
Some of these parameters will change during the development phase of the accelerator. I 
found it very useful that many of these parameters were summarized in a single working 
document. For the LHC, this document was stored under EDMS number 100513. 
 

Early choice 
One of the first choices to do was: Button or Striplines electrodes? 
Arguments retained in favor of Buttons were: 

• A welded Button electrode on a feedthrough is simple and robust. 
• When fitted on a flange with a gasket, it is removable from outside the 

vacuum chamber and so can be replaced in case of leak or short-circuit. 
• A diameter 24mm Button BPM is less cumbersome in longitudinal space 

compared to 120mm striplines. 
• It is well adapted to short LHC bunches. 
• Has little effect on longitudinal impedance. 

 
On the other hand striplines were: 

• More expensive to build. 
• Less reliable due to the numerous small assembled parts. 
• Requiring a precise machining or gap adjustment. 
• More sensitive.  However, this was not an advantage in the case of the 

cold LHC BPMs because of the power to be extracted from the cryostat 
and the heat load generated with the nominal beam current. 

 
Given these pro and cons, the final choice (made in 1996) was for button electrodes for 
the arc BPMs with of course some directional striplines couplers around the experimental 
areas were directivity is needed. One can also state that this kind of choice is also greatly 
influenced by good or bad experience of people having already worked with each kind of 
technology. 
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BPM types in the LHC 
How many types of BPM do you think we need in a machine like the LHC? 
 
The first studies were concentrated on the standard cold BPM, 860 of them being needed 
for the arcs and dispersion suppressors. Then came the time to adapt to enlarged vacuum 
chambers; rotated aperture beam screens; experimental areas (with striplines). Some 
combined pick-ups were also designed to be shared with RF systems. The cold family 
was then completed with some other special cases requiring a particular integration. 
 
With the warms areas, the number of BPM types was inflated drastically since the initial 
design due to the ever changing environment and parameters in these regions. The family 
was not completed until this year, with the special BPMs required for the beam dumping 
system and transverse diagnostics (long striplines, Tune and chromaticity measurements 
and wideband pick-ups) 
 
At the end, it was necessary to construct, install and maintain a family of more than 30 
Equipment codes and 1090 monitors. This diversity greatly increased the workload, as it 
was nearly as much work to launch and integrate a series of 5 BPMs as it was for the 
larger series of hundreds of monitors. 
 

BPM Integration 

 
The LHC BPMs are housed in the 
technical service module (QQS) on 
the connection side of the Short 
Straight Section (SSS), upstream of 
the beam 1 quadrupole. This is a 
crowded area shared with many 
other systems, leading to severe 
installation constraints. Given the 
number of components, people 
involved and interfering functions, 
every change done in the QQS 
during the development phase had 
to be well documented and made 
aware to all involved. This was 
done with the help of Engineering 
Change Request Procedures. 
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Given the restricted space, the BPM was since the beginning designed to be the input 
point for the cooling capillaries feeding helium to the Beam Screen. So once welded to 
the 5m long Beam Screen, the BPM is considered as a Vacuum component. 
 

 
 
On the upstream side, the BPM flange is used to interconnect the SSS to the neighboring 
dipole magnet and at this end therefore has to satisfy the requirements of an interconnect 
component. 
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Exceptions to this standard integration scheme required even more work than the 
standard layout. The most difficult one to integrate was the directional coupler, named 
BPMS, situated in front of the Q2 magnet in the Q1-Q2 interconnect. Not only were these 
magnets designed by US collaborators, making integration of any CERN component 
more difficult, but given the proximity of surrounding bus bars, the BPM had to be 
rotated by 45 degrees in order to make it even possible to connect the coaxial signal 
cables. 
 
Having learned with this first experience, (tooling development for the first arc BPMs 
was lengthy and costly) the integration concept was changed for the Enlarged BPM 
(BPMY). Here the monolithic arc BPM evolved to a modular concept with the aim of 
producing standardized components that could be adapted to other locations without the 
need for special tooling. It also took advantage of existing vacuum components such as 
the dipoles plug-in modules. 
 

 
Modular concept of the Enlarged BPM. 
 

Components 
Let’s now review the system components and see some particular aspects or 
technological issues that have to be carefully taken in account during the fabrication 
process. 

Bodies 

Mechanical tolerances 
Given the functional specification, usually requesting measurements in the micron range, 
it is usual to specify tight mechanical tolerances during the mechanical design stage. 
This is promising but: 

• Be sure to maintain these tight tolerances all along the production chain. 
• Do not over-specify your design as tight tolerances immediately impact 

the cost of machining.  

Cooling Tube Feedthrough Module 

BPMY Support 

BPM Body 
Cold Bore 

Beam ScreenEnlarged BPM 
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• Do not forget that the 3 axis metrological controls are long and expensive. 
• Do not forget to take into account mechanical deformations (see below). 

 

Simulations 
In the same manner as Microwave Studio is useful in the design of electrical parameters, 
Ansys 3D proved to be very valuable in determining the expected mechanical 
deformations under pressure constraints or to show the thermal gradients along 
components. 
 

 
 

Material 
Up to now, 50 leaks have been found in the LHC machine due to bad material (but not 
yet on BPM bodies). They were discovered after the welding of interconnect components. 
The reason behind these leaks was found to be due to macro-inclusions found in one 
batch of the forged austenitic stainless steel of type AISI 316LN used in the LHC.  

 
Picture from A. Gerardin 
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Leaks appeared around these inclusions due to the final stress applied on the material 
during welding. Such macro-inclusions can produce leaks on material thicknesses up to 
some millimeters. 
To avoid this, a new material specification with an enhanced forging procedure is being 
issued to replace the current one issued in 1999 (CERN 1001-Ed. 3-02.08.1999).  
 
 

Copper 
The electroplated inner copper layer of 0.1mm thickness is mandatory to maintain the 
LHC longitudinal impedance. It also equalizes the temperature over the length of the 
BPM body. 
Nickel being excluded due to its magnetic properties, gold is used as a strike between the 
steel and copper. 
Perfect cleaning is the key for strong adherence. Witness samples were requested all 
along the fabrication to check process quality and copper RRR. 
Poor adherence leads to blisters forming on the copper layer during the bakeout. It is 
important that such an eventuality is discovered well before the end of the fabrication 
process. 
 

 

 
 

Welding 
 

Welds should be re-qualified regularly during production even with automated 
orbital welding machines. The internal welding surface should be such that the weld does 
not affect the copper plating. 
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Buttons 

 
 
The curved BPM Buttons are the only non welded cold components of the LHC vacuum 
chamber. The component was designed to be exchangeable, fitted on a flange with a 
Helicoflex ® type gasket. 
 

Feedthrough technology 

 
 
For the UHV coaxial feedthrough, glass metal technology was preferred to brazed 
ceramic after checks and analysis done on prototypes. 
 

 
 
 
 

Prone to cracks
& fissures

Excellent adhesion 
to all surface blemishes 

Brazing

Ceramic 

Metallic 
Pin 

Stainless Steel Body 

Classical Ceramic Seal Glass-Ceramic Seal 
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A close collaboration with the supplier allowed the design and fabrication steps to be 
optimized before the series production got underway. 
 
The following systematic tests were carried out by the supplier: 

• Mechanical measurements, 
• 5 thermal shock cycles in liquid nitrogen 
• Electrical checks, 
• Leak test after bake out at 150 degrees for 15 hours. 
 

Electrical tests and the pairing of buttons were carried out at CERN. 
To measure the amplitude response and capacitance, a synthetic pulse from a Vector 
Network Analyzer is sent to the antenna of a test bench. A reference button is used to 
cross check the VNA calibration. 
 
 

 
Button measurement test bench. 
 
 
 

 
Pairing on amplitude response. 
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Striplines 
The design consists of two parts: 

1. Installed from inside the vacuum chamber, two coaxial assemblies are used to 
mechanically attach the electrode to the body. 

2. Fitted from outside, glass ceramic to metal UHV feedthroughs (same technology 
as for the buttons) with a Helicoflex ® gasket gives the vacuum seal and 
electrically connects the electrodes to the N connectors on the outside of vacuum 
chamber. 

 
 
The insulator used for the coaxial assemblies inside the vacuum chamber must be UHV 
and cryo compatible, radiation resistant, mechanically stable and have low losses. Ultem 
was our material of choice. 
On one side, a sliding contact allows for the thermal contraction of the electrode. A 
Rhodium – Gold contact was used for this as it has been shown not to stick at cryo 
temperatures. 
 
The whole fixture is Electron Beam welded. The small weld on the 2mm diameter pin 
was finally done at CERN. 
 
The electrode gap is not 
easy to trim with this 
design. After 3D 
metrological control of key 
points in the body, the 
spacer (2) is adapted in 
height and the electrode 
washer (5) welded. 
The achieved directivity 
with this design is 28 dB 
with a high cut-off 
frequency of 70MHz. 
 
Electrical tests using a TDR 
were carried out in a 
cryogenic environment 
during the development to 
measure the contact resistance and impedance variation with temperature. 
External inputs of the Vector Network Analyzer S Parameter set were used to switch the 
different instruments during temperature cycles.  
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Cryogenic Signal Cables 

A strong specification 
The cold semi-rigid coaxial cables have to meet some tough specifications:  

 The cables must be compatible with a cryogenic environment, have high 
radiation resistance, be mechanically preformed, have a low heat transfer 
coefficient and VSWR, and most important, have good electrical stability 
under all these conditions. 

 The electrical length difference was specified to be less than 10ps for the 4 
cables associated with a single BPM 

The dielectric materials under consideration included silicon dioxide, magnesium oxide 
and ultem (polyimide). The contract was finally awarded to KAMAN (US) for 4250 units 
in 2001 with the choice of a silicon dioxide foam (SIO2) dielectric. However, MEGGITT 
(US) took over KAMAN before the start of production.  
A “Gold length cable reference” was used all along the fabrication to ease the pairing of 
cables, which helps the logistics on the CERN side as all cables of a particular type are 
now replaceable by any other of the same type. 
 

Integration is a challenge 
It was not possible to mount the first prototype in the QQS! A new integration design 
with a groove in the thermal shield was required to finally be able to mount the cables 
and eventually to allow their removal if one of them breaks. 
 

 
Forming was not found to be as accurate as was specified. 
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Other configurations 
 
The design of 5 different forming configurations was required to fit to all the BPM types. 
The cabling of the directional coupler in front of the Q2 magnet is the worst, requiring in 
the tunnel during the interconnection process. This kind of configuration should be 
avoided for the safety of these fragile and expensive components 
 

 
 
Cabling of the directional coupler in front of the Q2 magnet. 
 
 
Finally, in order to avoid that the connector becomes unscrewed with thermal cycling, the 
connector nuts are locked in place by a twisted wire.  
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Cryostat feedthroughs 
This warm component used to extract signal from the insulation vacuum has to withstand 
radiation and have a low VSWR. 
Use of a DN100 flange with 4 N tight connectors with NBR (Nitride Rubber) gaskets in 
place of welded ceramic feedthroughs allowed us to gain a factor 10 in price. 
 

 
 
To detect any crossed cables during installation, a simple wiring test was included in the 
assembly work package. 
 
 

BPM installation and Tests 
BPM installation is part of a work package that is sub-contracted for the 480 SSS 
magnets. 

Procedure: 
• Weld the 5 m long beam screen to BPM body (contract) 
• Select pairs of button feedthroughs for mounting (BI)   
• Mount button feedthroughs (contract) 
• Perform leak test (VAC) 
• Insert BPM/beam screen assembly (contract) 
• Spot weld BPM to support (contract) 
• Measure and adjust position and tilt of BPM (Survey) 
• Weld BPM to support (contract) 
• Measure position and tilt of BPM (Survey) 
• Install and connect BPM cables (contract) 
• Mount warm feedthrough on cryostat (contract) 
• Perform electrical test of BPM system (BI) 

 Worries: 
The contract started slowly in December 2003 and technology transfer had to be repeated 
many times as the personnel changed regularly. 
Magnet installation cannot wait! As this work package is one of the last before 
installation any non-conformities have to be treated rapidly. 
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Summary 

• Schedule 
All hardware has now been received after years of development (some of it just in time!) 
Installation is now nearing completion (840 cold BPMs from a total of 956 are now 
assembled) 

• Budget 
We are currently within budget, but the original cryogenic cable budget was greatly 
underestimated. 

• Design 
Experience from previous machines at CERN and similar machines around the world 
proved to be extremely valuable in making some of the technical choices. 

• Specification 
Many of the issues related to materials could have been avoided if a timely global 
material purchase had been made at the project level. As it was, competition between 
different project engineers to order tons of material at the same could lead to delivery 
delays of up to 8 months.  

• Integration 
We learn all along the project …. 
“What I would change if I would do it once again” 

• Construction and Installation 
Everything was slower than planned partly due to the large scale of the project and the 
limited manpower available. 
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LARGE HORIZONTAL APERTURE BPM FOR USE IN DISPERSIVE 
SECTIONS OF MAGNETIC CHICANES 

K. Hacker, F. Loehl, H. Schlarb DESY, Hamburg, Germany 
 

Abstract 
A sub-5 μm resolution electron beam position monitor 

(BPM) with a 10 cm horizontal aperture is described. It 
was installed in the first bunch compressor chicane of 
FLASH in October 2006 and is required for a bunch-to-
bunch energy measurement. It utilizes a stripline-pickup 
mounted perpendicularly to the beam direction to 
generate broadband electrical-pulses travelling to the left 
and right of the beam direction. The arrival-times of the 
broadband pulses will be measured through an electro-
optical technique developed for a beam arrival-time 
monitor. In this paper, a comparison of simulations for the 
beam position monitor and measurements taken with an 
8GHz bandwidth oscilloscope are presented. 

INTRODUCTION 
Energy jitter of the electron beam becomes transverse 

position jitter in dispersive regions of chicanes and after 
chicanes it becomes longitudinal and transverse position 
jitter. This longitudinal position jitter, or arrival-time 
jitter, presents a problem for the synchronization of 
external lasers to the electron beam. Since the low-level 
RF system alone cannot provide enough energy stability, 
a beam-based energy feedback is envisioned to stabilize 
the beam compression and arrival-time of the electron 
beam at the end of the accelerator. A monitor required for 
such a feedback system could be a high-resolution, large-
horizontal-aperture BPM placed in the dispersive sections 
of magnetic chicanes.  

A beam arrival-time stability of 30 fs (~10 μm at v=c) 
is desired for pump-probe experiments and mandatory for 
laser based electron beam manipulation at FLASH and 
the XFEL [1].  For an energy stability of 10-4 at FLASH, 
the transverse position jitter in the dispersive section of 
the first chicane becomes 34.5 μm and results in a 
longitudinal position jitter of 18 μm. A monitor for a 
feedback system should be able to measure the energy by 
a factor of three better than the desired energy stability 
and this means that the resolution for a beam position 
measurement in the chicane must be better than 6 μm and 
for a longitudinal time-of-flight path-length measurement 
it should resolve 3 μm. 

A longitudinal time-of-flight energy measurement can 
be made with two beam arrival-time monitors: one before 
and one after the chicane, but a BPM energy measurement 
has an advantage given by the ratio of the R16 to the R56 
terms. In the case of the first bunch compressor for the 
XFEL, this advantage in the required sensitivity of the 
monitor is a factor of six.  

Standard BPMs can get better than 6 μm single-shot 
resolution, but they do not have the large horizontal 

aperture that the location in the dispersive section of the 
chicane requires, so a novel design must be chosen. A 
standard BPM could be placed on movers, but the large 
energy spread, space constraints, and the undesirability of 
bellows in a wakefield sensitive area rule out this 
possibility. Alternatively, an array of small, 
longitudinally-oriented striplines could be placed above 
the path of the beam to give a transverse beam profile, but 
experience with the multi-channel data acquisition, wire 
interference, calibration issues, and DC offset drifts of 
SEM grids suggests that this could be a difficult design to 
realize. Consequently, a rather simple perpendicularly 
mounted stripline concept was suggested, but it was noted 
that it could not achieve the required resolution with 
standard electrical processing techniques [2]. Thanks to 
the development of a broadband laser-based 
synchronization system, new optical-techniques for 
electrical-pulse phase measurement make the required 
resolution possible [3]. This system is being duplicated 
for commissioning with the chicane BPM in February 
2007. Oscilloscope measurements of the beam transient 
from the BPM pickup demonstrate that it meets 
expectations. 

VACUUM CHAMBER DESIGN 
The design utilizes a cylindrical pickup within a 

cylindrically shaped vacuum chamber channel that lies 
over and perpendicular to the path of the electron beam 
(see Fig. 1). When the electron beam travels beneath this 
pickup, broadband electrical pulses travel to opposite 
ends of the pickup. The arrival times of the pulses are 
used to determine the position of the electron beam. 

General Layout 

Figure 1: Perpendicularly-mounted stripline BPM pickup. 

beam 

stripline vacuum

tapering

SMA output

beam 

RF 
pulses 

beam 

stripline vacuum

tapering

SMA output

Beam 

Stripline Vacuum

Tapering

SMA output

Beam 

RF 
Pulses 

126



In Fig. 1, the perpendicularly mounted stripline is 
depicted in 3-D as well as in cross-section. Only the 
upper-half of the BPM is shown, since the lower-half is 
identical. The beam is represented by a thick line 
underneath the stripline. The central portion of the 
stripline is tapered on both ends from a 3 mm diameter to 
an SMA sized connector pin. The vacuum feedthroughs to 
SMA connectors are at the ends of the stripline.  

Standard stripline designs do not have tapering from the 
pickup to the feedthrough, but instead have a larger radius 
pickup connected at a sharp angle to a smaller SMA 
connector sized feedthrough. The tapered design was 
chosen to improve the broadband transmission of the 
beam transient signal because it is undesirable to have an 
overlap between the signals of individual bunches within 
the macro-pulse and because the resolution of the optical 
phase measurement is improved by more broadband 
transient transmission. 

Dimensions 
Key dimensions of the BPM are listed below in Table 1.  
 

Component Dimension Specification 

Pickup Radius 1.5 mm 

Pickup Center Height 5 mm 

Channel Radius 3.45 mm  

Chamber Half-height 4 mm 
 

Table 1: BPM Dimensions 
The ratio of the stripline pickup radius to the stripline 

channel radius was chosen based on a coaxial-cable 
impedance matching model. If the stripline channel were 
closed instead of open to the underlying beam pipe, the 
impedance would be 50 Ohms. Since the stripline channel 
is only a partial cylinder, the pickup assembly has closer 
to 60 Ohms impedance in both simulation and laboratory 
tests. This was the optimal configuration for coupling to 
the beam and throughput. 

The height of the pickup assembly above the center of 
the beam pipe was also optimized through a simulation. 
The best coupling and throughput was achieved for a 
position where the bottom of the pickup was ~0.5 mm 
below the boundary of the beam pipe.  

Construction 
Considerations for the construction include: 
• A ring shaped Alumina spacer is used to stabilize 

and align the pickup in the channel (for future 
designs, Vespel (polyimide) may be used). 

• A mini-bellows design for the connection from the 
pickup to the feedthrough accommodates thermal 
expansion of the pickup. 

• With flanges, the length is 130 mm and the width 
of the central chamber is 135 mm. (Parameters are 
adjustable for individual applications.) 

OPTICAL PHASE MEASUREMENT 

Beam Phase Monitor 
To date, 30 femtosecond resolution has been achieved 

with the optical beam arrival-time monitor measurement 
[3]. It utilizes a broadband optical pulse (< 1 ps) from a 
master laser oscillator that is locked to the 1.3 GHz 
reference of the machine. The light pulse travels via fiber 
optics through an electro-optical modulator (EOM) which 
encodes the amplitude information of an RF pulse in the 
light pulse. Essentially, the light pulse samples the RF 
pulse. The modulated light pulse is then detected with a 
50 MHz bandwidth photo diode and read out by a fast 
ADC that is clocked at twice the repetition rate of the 
laser and generated from the laser pulse itself. The 
method has only recently been tried and many 
possibilities for improving the resolution are still open.  

Since changes in beam arrival-time produce a change in 
laser intensity, the measurement is limited by the 
steepness of the RF signal slope and the detection of the 
laser amplitude. Slope changes can distort the 
measurement, so it is best to measure at the zero crossing 
of the signal for an accurate phase measurement.  

Beam Position Measurement 
For the chicane BPM, the average of two outputs’ phase 

measurements can also be used to measure the beam 
arrival-time, as long as the energy spread is constant. The 
difference of the two outputs’ phase measurements gives 
the position. Alternatively, if the arrival-time is known 
from the phase monitor, the energy spread might be 
measured with the BPM. 

It is anticipated that for each BPM output, the RF signal 
will be split for a low-resolution (large range) phase 
measurement, and the other output for a high-resolution 
(small range) phase measurement. A delay-line will use 
the low-resolution measurement to put a high-resolution 
measurement in range. The position of this delay-line plus 
the fine measurement given by the ADC gives the beam 
position. This delay line must have sub-micrometer 
resolution over 10 cm and be adjusted between macro-
pulses (10 Hz) in order to keep the system measuring the 
beam transient at the zero crossing, thereby reducing the 
systematic errors of slope variation caused by beam 
charge fluctuations or transverse profile shape changes. 

The slope variation from charge fluctuation scales 
linearly and should amount to no more than 3 percent, an 
amount for which one can correct with a toroid charge 
measurement. The shape dependence can be monitored 
with a synchrotron light monitor after the second bend of 
the chicane. 

Interferometric schemes using either a CW laser or the 
master laser oscillator were also considered for this 
monitor, but the success of the arrival-time monitor’s 
optical phase measurement has shifted the focus to a tried 
concept.  
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SIMULATIONS 
In the Microwave Studio simulation, a Gaussian pulse 

was applied to the monopole mode of a waveguide port in 
order to simulate the electron beam.  The output signals of 
the SMA connector ports were scaled according to a 1 nC 
electron bunch charge (Figs. 2 and 3). 

 

 
Figure 2: 50 GHz bandwidth simulation of BPM output 
(blue) and 8 GHz oscilloscope measurement. The 
reflected pulse (right) is undesired and is due to the 
impedance mismatch caused by the ceramic support. 

The BPM response is linear over the entire horizontal 
aperture and is insensitive to small changes in the beam 
width and shape. Vertical position changes and charge 
fluctuations influence the amplitude of the signal but not 
the position measurement. 

 

 
Figure 3: When the bandwidth of the simulation is the 
same as the bandwidth of the oscilloscope (8 GHz) good 
agreement is observed. The additional ringing on the 
oscilloscope signal is believed to be a scope artefact, but 
no conclusive test has been done. 

The simulation did not include the 1 meter long cable 
between the pickup and the oscilloscope. The additional 
ringing observed on the oscilloscope signal is believed to 
be an oscilloscope artefact, but a conclusive test will be 

available in February 2007 when the optical front-end is 
commissioned. 

MEASUREMENTS 
 
The beam energy was changed through the adjustment 

of the accelerator section ACC1 RF amplitude and the 
beam position in the chicane changed as expected. The 
position was measured on an 8GHz oscilloscope by 
triggering the acquisition of the beam transient from one 
end of the stripline with the output from the opposite end 
(Fig. 4). This method should give ~150 um position 
resolution. The target resolution for the optical front-end 
is <5 um. 

 

 
Figure 4: Beam transients for different beam energies. 

 
Figure 5: Beam positions for different beam energies for 
an angle of 18 degrees into and out of the chicane: 
measured (red*) and calculated R16, T166, R1666 (blue).  

In Fig. 5, the measured values of the positions expected 
in the chicane for different beam energies (red) agree well 
with the calculated values (blue). The straight blue line is 
just the R16 term for the chicane and the curved lines 
include the higher order dispersion terms, T166 and 
R1666. The calculation was done for an angle into the 
chicane of 18 degrees. On the left end of the plot, the 
beam was clipped by the vacuum chamber and on the 
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right end of the plot, the gradient could not be increased 
any more. 

In Fig. 6, the phase of the 1.3 GHz accelerating RF was 
changed and the beam position in the chicane changed in 
a sinusoidal form, as expected. When the bunch is further 
off crest, the energy spread, and therefore the transverse 
position spread, of the bunch is larger, but the length of 
the bunch is shorter. This situation seems like it could 
produce a position measurement error for very off crest 
beams, due to the difference in the arrival times of the 
head and tail of the bunch, but in reality the monitor 
always measures the centroid. 

 
Figure 6: Beam positions for different beam energy 
chirps: measured (black*) and calculated (red). The phase 
of the accelerating RF was changed, creating a sinusoidal 
position change. 

 
Figure 7: Slope at the zero crossing for different energy 
spreads. Negative phase corresponds to increased energy 
spread. 

Fig. 7 shows the slope at the zero crossing for different 
accelerating RF phases. For the optical front- end, it is 
desirable to sample the transient as close as possible to 
the zero crossing because if one samples away from the 

zero crossing and then the bunch charge, the beam shape, 
or the vertical position changes significantly, then an error 
is introduced into the measurement from the resulting 
transient amplitude change. By sampling on the zero 
crossing the measurement is insensitive to amplitude 
changes. Nevertheless, it is good to see that bunch shape 
changes due to energy spread changes, do not drastically 
affect the slope of the transient. 

FUTURE DEVELOPMENTS 
A final version of the electro-optical front-end is 

expected to be completed by February 2007. The 
incorporation of the chicane BPM, upstream BPMs, the 
phase-monitor, and a bunch length monitor into an FPGA 
based bunch-to-bunch energy feedback will follow. 

The phase monitor and the BPM can distinguish the 
energy jitter that results from injector timing jitter from 
the energy jitter caused by the acceleration RF phase and 
amplitude jitter. The bunch length monitor and the BPM 
can distinguish the RF amplitude jitter from the RF phase 
jitter. BPMs before the chicane can be used to remove 
incoming orbit jitter from the chicane BPM’s energy 
measurement.  

CONCLUSIONS 
• The BPM is expected to have sub-5 μm resolution. 
• It will have a 10 cm horizontal range for this first 

application in the first bunch compressor. 
• It will be used in a bunch-to-bunch energy 

measurement. 
• It will use an optical phase measurement 

developed for a beam arrival-time monitor. 
• First results from the beam arrival-time monitor 

optical phase measurement give a sub-30 fs 
resolution with many options still open for 
improving the system’s resolution.  
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4th CARE-Meeting HHH-N3-ABI in Lüneburg, Germany 
 

Simulation of BPM front-end electronics and Special Mechanical Designs 
 
 

3rd half day:   Cold BPM Technology 
Chair: Kay Wittenburg, DESY 
 
Invited talks:  
1. D. Noelle  DESY  Future cold BPMs at DESY (20 min)  
2. M. Nagata, K. Iwamoto  Kyocera  RF vacuum feed-through for cryogenic application  
3. F. Kialashaki   Meggitt   BPM and RF vacuum feed-through for cryogenic application  
4. S. Vilcins  DESY  Planned testprocedures for cold BPM-feedthroughs and   

   experiences with cold BPM in HERA   
5. C.Boccard  CERN  Design Choices for the cold LHC-BPMs   
6. N. Baboi  DESY  A very special large aperture BPM at FLASH    
 
Main remarks in the discussions: 

• Talk 1: Overview of future cryogenic BPMs in XFEL/ILC, referring to talks to M. 
Wendt, C. Simon, T. Traber 

• Talk 2 and 3: Overview of commercial products from two companies. Meggit 
prefers Glass to metal seal design while Kyocera works with ceramic to metal 
sealing. BPMs can be tested in factory with liquid N2 temperatures. No 
significant difference to liquid He temperatures in the mechanical behaviour 
are expected. (“N2 temperatures seems to be good enough”).  Factories do not 
have liquid He test abilities. 

• Talk 3: BPMs are modeled/simulated at Meggitt in CST and HFSS, with good 
agreement of the results.   

• Talk 4: Experiences from HERA cold BPMs: No significant differences 
between horizontal and vertical BPM failure rate (expected that horizontal 
BPM is more affected, but at HERA it is 1/3 horizontal and 2/3 vertical failure 
rate). However, the auditorium expected that failures are mainly due to thermal 
stress of the whole BPM device (stripline). Therefore it is recommended to 
make cryogenic tests with the complete BPM included in the vacuum 
chamber.   
No experiences of cold BPM failures (leakage) available from RHIC or 
FERMILAB.  
It is not recommended to make more than 2 cryogenic cycles with 
feedthroughs which will be used later in an accelerator. Otherwise it might get 
too close to their lifetime-limit. 2 cycles are enough to find production faults. 

• Talk 5: Also the cabling in the cryostat is an issue, not easy to get high quality 
FR cables with good thermal properties.  
Roughly estimated costs of a cold pick-up: Vacuum body ≈ 6000.- $ (note that 
the price of stainless steel increased very strongly (600% in last years), one 
button ≈ 200.- $, one cable ≈ 600,- $, warm feedthrough ≈ 600.- $ for 4 cables.  
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